Carregant...
Carregant...

Vés al contingut (premeu Retorn)

Almost totally complex points on elliptic curves

Autor
Guitart, X.; Rotger, V.; Zhao, Y.
Tipus d'activitat
Article en revista
Revista
Transactions of the American Mathematical Society
Data de publicació
2014-05
Volum
366
Número
5
Pàgina inicial
2773
Pàgina final
2802
Projecte finançador
ARITMÉTICA DE VARIEDADES ALGEBRAICAS: TEORIA Y COMPUTACIÓN
GRUP DE RECERCA EN TEORIA DE NOMBRES DE LA UPC
URL
http://www.ams.org/journals/tran/2014-366-05/S0002-9947-2013-05981-8/S0002-9947-2013-05981-8.pdf Obrir en finestra nova
Resum
Let F/F-0 be a quadratic extension of totally real number fields, and let E be an elliptic curve over F which is isogenous to its Galois conjugate over F-0. A quadratic extension M/F is said to be almost totally complex (ATC) if all archimedean places of F but one extend to a complex place of M. The main goal of this note is to provide a new construction for a supply of Darmon-like points on E, which are conjecturally defined over certain ring class fields of M. These points are constructed by m...
Paraules clau
Cohomology, Hilbert modular-forms, Periods, Quaternionic Shimura varieties, Real quadratic fields, Stark-Heegner points, Zeta-functions
Grup de recerca
TN - Grup de Recerca en Teoria de Nombres

Participants