Carregant...
Carregant...

Vés al contingut (premeu Retorn)

Layer solutions for the fractional Laplacian on hyperbolic space: existence, uniqueness and qualitative properties

Autor
Gonzalez, M.; Saéz, Mariel.; Sire, Y.
Tipus d'activitat
Document cientificotècnic
Data
2012-12
Repositori
http://hdl.handle.net/2117/17206 Obrir en finestra nova
URL
http://www.ma1.upc.edu/recerca/preprints/preprints-2012/Fitxers/prepr201202gonzalez.pdf Obrir en finestra nova
Resum
where (¿ Hn) corresponds to the fractional Laplacian on hyperbolic space for 2 (0; 1) and f is a smooth nonlinearity that typically comes from a double well potential. We prove the existence of heteroclinic connections in the following sense; a so-called layer solution is a smooth solution of the previous equation converging to 1 at any point of the two hemispheres S @1Hn and which is strictly increasing with respect to the signed distance to a totally geodesic hyperplane :We prove that...
Citació
Gonzalez, M.; Saéz, Mariel.; Sire, Y. "Layer solutions for the fractional Laplacian on hyperbolic space: existence, uniqueness and qualitative properties". 2012.
Grup de recerca
EDP - Equacions en Derivades Parcials i Aplicacions

Participants

Arxius