Carregant...
Carregant...

Vés al contingut (premeu Retorn)

Radial symmetry of solutions to diffusion equations with discontinuous nonlinearities

Autor
Serra, J.
Tipus d'activitat
Article en revista
Revista
Journal of differential equations
Data de publicació
2013-02-15
Volum
254
Número
4
Pàgina inicial
1893
Pàgina final
1902
DOI
https://doi.org/10.1016/j.jde.2012.11.015 Obrir en finestra nova
Repositori
http://hdl.handle.net/2117/20352 Obrir en finestra nova
URL
http://www.sciencedirect.com/science/article/pii/S0022039612004469 Obrir en finestra nova
Resum
We prove a radial symmetry result for bounded nonnegative solutions to the p-Laplacian semilinear equation -¿pu=f(u) posed in a ball of Rn and involving discontinuous nonlinearities f. When p=2 we obtain a new result which holds in every dimension n for certain positive discontinuous f. When p¿n we prove radial symmetry for every locally bounded nonnegative f. Our approach is an extension of a method of P.L. Lions for the case p=n=2. It leads to radial symmetry combining the isoperimetric ineq...
Citació
Serra, J. Radial symmetry of solutions to diffusion equations with discontinuous nonlinearities. "Journal of differential equations", 15 Febrer 2013, vol. 254, núm. 4, p. 1893-1902.
Grup de recerca
EDP - Equacions en Derivades Parcials i Aplicacions

Participants

  • Serra Montoli, Joaquim  (autor)