Carregant...
Carregant...

Vés al contingut (premeu Retorn)

Region based foreground segmentation combining color and depth sensors via logarithmic opinion pool decision

Autor
Gallego, J.; Pardas, M.
Tipus d'activitat
Article en revista
Revista
Journal of visual communication and image representation
Data de publicació
2013-04-01
Volum
25
Número
1
Pàgina inicial
184
Pàgina final
194
DOI
https://doi.org/10.1016/j.jvcir.2013.03.019 Obrir en finestra nova
Repositori
http://hdl.handle.net/2117/21045 Obrir en finestra nova
URL
http://www.sciencedirect.com/science/article/pii/S104732031300059X# Obrir en finestra nova
Resum
In this paper we present a novel foreground segmentation system that combines color and depth sensors information to perform a more complete Bayesian segmentation between foreground and background classes. The system shows a combination of spatial-color and spatial-depth region-based models for the foreground as well as color and depth pixel-wise models for the background in a Logarithmic Opinion Pool decision framework used to correctly combine the likelihoods of each model. A posterior enhance...
Citació
Gallego, J.; Pardas, M. Region based foreground segmentation combining color and depth sensors via logarithmic opinion pool decision. "Journal of visual communication and image representation", 01 Abril 2013, vol. 25, núm. 1, p. 184-194.
Paraules clau
Color and depth combination, Foreground segmentation, GMM, Hellinger distance, Kinect camera, Logarithmic Opinion Pool, Space-color models, Space-depth models
Grup de recerca
GPI - Grup de Processament d'Imatge i Vídeo
IDEAI-UPC Intelligent Data Science and Artificial Intelligence

Participants