Carregant...
Carregant...

Vés al contingut (premeu Retorn)

Degree and algebraic properties of lattice and matrix ideals

Autor
O'Carroll, L.; Planas-Vilanova, F. A.; Villarreal, R.
Tipus d'activitat
Article en revista
Revista
SIAM journal on discrete mathematics
Data de publicació
2014-01-01
Volum
28
Número
1
Pàgina inicial
394
Pàgina final
427
DOI
https://doi.org/10.1137/130922094 Obrir en finestra nova
Repositori
http://hdl.handle.net/2117/23006 Obrir en finestra nova
URL
http://epubs.siam.org/doi/abs/10.1137/130922094 Obrir en finestra nova
Resum
We study the degree of nonhomogeneous lattice ideals over arbitrary fields, and give formulas to compute the degree in terms of the torsion of certain factor groups of Z(s) and in terms of relative volumes of lattice polytopes. We also study primary decompositions of lattice ideals over an arbitrary field using the Eisenbud-Sturmfels theory of binomial ideals over algebraically closed fields. We then use these results to study certain families of integer matrices (positive critical binomial (PCB...
Citació
O'Carroll, L.; Planas, F. A.; Villarreal, R. Degree and algebraic properties of lattice and matrix ideals. "SIAM journal on discrete mathematics", 01 Gener 2014, vol. 28, núm. 1, p. 394-427.
Paraules clau
BINOMIAL IDEALS, GRAPHS, PCB ideal, degree, graded binomial ideal, lattice ideal, primary decomposition
Grup de recerca
GEOMVAP - Geometria de Varietats i Aplicacions

Participants

Arxius