Carregant...
Carregant...

Vés al contingut (premeu Retorn)

Permutation 2-groups I: structure and splitness

Autor
Elgueta, J.
Tipus d'activitat
Article en revista
Revista
Advances in mathematics
Data de publicació
2014-06-20
Volum
258
Pàgina inicial
286
Pàgina final
350
DOI
https://doi.org/10.1016/j.aim.2014.03.011 Obrir en finestra nova
Projecte finançador
GEOMETRIA DE VARIETATS I APLICACIONS
GEOMETRÍA DE VARIEDADES ALGEBRAICAS Y APLICACIONES
Geomatría algebraica, simpléctica, aritmética y aplicaciones.
Repositori
http://hdl.handle.net/2117/28484 Obrir en finestra nova
URL
http://www.sciencedirect.com/science/article/pii/S0001870814001054 Obrir en finestra nova
Resum
By a 2-group we mean a groupoid equipped with a weakened group structure. It is called split when it is equivalent to the semidirect product of a discrete 2-group and a one-object 2-group. By a permutation 2-group we mean the 2-group Sym(G) of self-equivalences of a groupoid G and natural isomorphisms between them, with the product given by composition of self-equivalences. These generalize the symmetric groups S-n, n >= 1, obtained when G is a finite discrete groupoid.; After introducing the wr...
Citació
Elgueta, J. Permutation 2-groups I: structure and splitness. "Advances in mathematics", 20 Juny 2014, vol. 258, p. 286-350.
Paraules clau
ALGEBRAIC-GEOMETRY, CATEGORIES, Categorical group, GROUPOIDS, Groupoid, HOMOTOPY TYPES, Permutation 2-group, REPRESENTATION, Split 2-group
Grup de recerca
GEOMVAP - Geometria de Varietats i Aplicacions

Participants