Carregant...
Carregant...

Vés al contingut (premeu Retorn)

Symmetries of the Free Schrodinger Equation in the Non-Commutative Plane

Autor
Batlle, C.; Gomis, J.; Kamimura, K.
Tipus d'activitat
Article en revista
Revista
Symmetry, integrability and geometry: methods and applications
Data de publicació
2014-01-01
Volum
10
DOI
https://doi.org/10.3842/SIGMA.2014.011 Obrir en finestra nova
Projecte finançador
Desarrollo de sistemas de control para la mejora de la eficiencia y la vida útil en sistemas basados en pilas de combustible PEM
Repositori
http://hdl.handle.net/2117/23380 Obrir en finestra nova
Resum
We study all the symmetries of the free Schrodinger equation in the non-commutative plane. These symmetry transformations form an infinite-dimensional Weyl algebra that appears naturally from a two-dimensional Heisenberg algebra generated by Galilean boosts and momenta. These infinite high symmetries could be useful for constructing non-relativistic interacting higher spin theories. A finite-dimensional subalgebra is given by the Schrodinger algebra which, besides the Galilei generators, contain...
Citació
Batlle, C.; Gomis, J.; Kamimura, K. Symmetries of the Free Schrodinger Equation in the Non-Commutative Plane. "Symmetry, integrability and geometry: methods and applications", 01 Gener 2014, vol. 10.
Paraules clau
FIELD-THEORY, GALILEAN SYMMETRY, PHENOMENOLOGICAL LAGRANGIANS, SCALE, SPACE, Schrodinger equation, Schrodinger symmetries, TERM, higher spin symmetries, non-commutative plane
Grup de recerca
ACES - Control Avançat de Sistemes d´Energia

Participants

Arxius