Carregant...
Carregant...

Vés al contingut (premeu Retorn)

Hybridizable Discontinuous Galerkin with degree adaptivity for the incompressible Navier-Stokes equations

Autor
Giorgiani, G.; Fernandez, S.; Huerta, A.
Tipus d'activitat
Article en revista
Revista
Computers and fluids
Data de publicació
2014-07-02
Volum
98
Pàgina inicial
196
Pàgina final
208
DOI
https://doi.org/10.1016/j.compfluid.2014.01.011 Obrir en finestra nova
Projecte finançador
Simulaciones numéricas de altada fidelidad para una ingeniería asistida por ordenador fiable
Repositori
http://hdl.handle.net/2117/28520 Obrir en finestra nova
URL
http://www.sciencedirect.com/science/article/pii/S0045793014000188 Obrir en finestra nova
Resum
A degree adaptive Hybridizable Discontinuous Galerkin (HDG) method for the solution of the incompressible Navier-Stokes equations is presented. The key ingredient is an accurate and computationally inexpensive a posteriori error estimator based on the super-convergence properties of HDG. The error estimator drives the local modification of the approximation degree in the elements and faces of the mesh, aimed at obtaining a uniform error distribution below a user-given tolerance in a given output...
Citació
Giorgiani, G.; Fernandez, S.; Huerta, A. Hybridizable Discontinuous Galerkin with degree adaptivity for the incompressible Navier-Stokes equations. "Computers and fluids", 02 Juliol 2014, vol. 98, p. 196-208.
Paraules clau
2ND-ORDER ELLIPTIC PROBLEMS, APPROXIMATIONS, BOUNDS, CFD, DEGREE HDG METHODS, Discontinuous Galerkin, ERROR ESTIMATION, FLOW, FUNCTIONAL OUTPUTS, High-order, Hybrid methods, Hybridizable Discontinuous Galerkin, NONCONFORMING MESHES, Navier-Stokes equations, PART II, WEAK SOLUTIONS, p-Adaptivity
Grup de recerca
LACÀN - Mètodes Numèrics en Ciències Aplicades i Enginyeria

Participants

Arxius