Carregant...
Carregant...

Vés al contingut (premeu Retorn)

Nonconforming discretization of the electric-field integral equation for closed perfectly conducting objects

Autor
Ubeda, E.; Rius, J.; Heldring, A.
Tipus d'activitat
Article en revista
Revista
IEEE transactions on antennas and propagation
Data de publicació
2014-08-01
Volum
62
Número
8
Pàgina inicial
4171
Pàgina final
4186
DOI
https://doi.org/10.1109/TAP.2014.2325954 Obrir en finestra nova
Projecte finançador
Design, simulation and measurement of millimetre wave antennas for comunications and imaging
Dispositivos pasivos avanzados para cabezales multibanda, multimodo
Terahertz Technology for Electromagnetics Sensing Applications (Terasense)
Repositori
http://hdl.handle.net/2117/24163 Obrir en finestra nova
URL
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6819426 Obrir en finestra nova
Resum
Galerkin implementations of the method of moments (MoM) of the electric-field integral equation (EFIE) have been traditionally carried out with divergence-conforming sets. The normal-continuity constraint across edges gives rise to cumbersome implementations around junctions for composite objects and to less accurate implementations of the combined field integral equation (CFIE) for closed sharp-edged conductors. We present a new MoM-discretization of the EFIE for closed conductors based on the ...
Citació
Ubeda, E.; Rius, J.; Heldring, A. Nonconforming discretization of the electric-field integral equation for closed perfectly conducting objects. "IEEE transactions on antennas and propagation", 01 Agost 2014, vol. 62, núm. 8, p. 4171-4186.
Paraules clau
Basis functions, Bodies, Dielectric objects, Electromagnetic scattering, Frequencies, Junctions, MFIE, Moments, electric field integral equation (EFIE), integral equations, moment method
Grup de recerca
ANTENNALAB - Grup d´Antenes i Sistemes Radio

Participants