Carregant...
Carregant...

Vés al contingut (premeu Retorn)

Diagonal cycles and Euler systems I: a p-adic Gross-Zagier formula

Autor
Darmon, H.; Rotger, V.
Tipus d'activitat
Article en revista
Revista
Annales scientifiques de l'école normale supérieure
Data de publicació
2014-07-01
Volum
47
Número
4
Pàgina inicial
779
Pàgina final
832
Resum
This article is the first in a series devoted to studying generalised Gross-Kudla-Schoen diagonal cycles in the product of three Kuga-Sato varieties and the Euler system properties of the associated Selmer classes, with special emphasis on their application to the Birch-Swinnerton-Dyer conjecture and the theory of Stark-Heegner points. The basis for the entire study is a p-adic formula of Gross-Zagier type which relates the images of these diagonal cycles under the p-adic Abel-Jacobi map to spec...
Paraules clau
CUSP FORMS, HEEGNER CYCLES, MODULAR-FORMS, PRODUCT L-FUNCTIONS, REPRESENTATIONS, TRILINEAR FORMS, TRIPLE PRODUCT, VALUES
Grup de recerca
TN - Grup de Recerca en Teoria de Nombres

Participants