Carregant...
Carregant...

Vés al contingut (premeu Retorn)

Order types and cross-sections of line arrangements in R^3

Autor
Aichholzer, O.; Fabila-Monroy, R.; Hurtado, F.; Pérez, P.; Ruiz, A.; URRUTIA, J.; Vogtenhuber, B.
Tipus d'activitat
Presentació treball a congrés
Nom de l'edició
26th Canadian Conference on Computational Geometry
Any de l'edició
2014
Llibre d'actes
Proceedings 26th Canadian Conference on Computational Geometry
Pàgina inicial
1
Pàgina final
6
Repositori
http://hdl.handle.net/2117/26484 Obrir en finestra nova
URL
https://projects.cs.dal.ca/cccg2014/proceedings/papers/paper39.pdf Obrir en finestra nova
Resum
We consider sets L = {l1,...., ln} of n labeled lines in general position in R3, and study the order types of point sets fp1; : : : ; png that stem from the intersections of the lines in L with (directed) planes II, not parallel to any line of L, i.e., the proper cross-sections of L. As a main result we show that the number of different order types that can be obtained as cross-sections of L is O(n9), and that this bound is tight.
Citació
Aichholzer, O. [et al.]. Order types and cross-sections of line arrangements in R^3. A: Canadian Conference on Computational Geometry. "Proceedings 26th Canadian Conference on Computational Geometry". 2014, p. 1-6.
Grup de recerca
DCCG - Grup de recerca en geometria computacional, combinatoria i discreta

Participants

  • Aichholzer, Oswin  (autor ponent)
  • Fabila-Monroy, Ruy  (autor ponent)
  • Hurtado Diaz, Fernando Alfredo  (autor ponent)
  • Pérez Lantero, Pablo  (autor ponent)
  • Ruiz Vargas, Andrés  (autor ponent)
  • Urrutia Galicia, Jorge  (autor ponent)
  • Vogtenhuber, Birgit  (autor ponent)