Carregant...
Carregant...

Vés al contingut (premeu Retorn)

Singular solutions for a class of traveling wave equations arising in hydrodynamics

Autor
Geyer, A.; Mañosa, V.
Tipus d'activitat
Document cientificotècnic
Data
2015-02-19
Codi
arXiv:1502.05158 [math.CA]
Projecte finançador
An¿lisis e identificaci¿n de sistemas con hist¿resis usando ¿rbitas peri¿dicas
Control, din¿mica i aplicacions
Repositori
http://hdl.handle.net/2117/26450 Obrir en finestra nova
URL
http://arxiv.org/abs/1502.05158 Obrir en finestra nova
Resum
We give an exhaustive characterization of singular weak solutions for ordinary differential equations of the form $\ddot{u}\,u + \frac{1}{2}\dot{u}^2 + F'(u) =0$, where $F$ is an analytic function. Our motivation stems from the fact that in the context of hydrodynamics several prominent equations are reducible to an equation of this form upon passing to a moving frame. We construct peaked and cusped waves, fronts with finite-time decay and compact solitary waves. We prove that one cannot obtain...
Citació
Geyer, A.; Mañosa, V. "Singular solutions for a class of traveling wave equations arising in hydrodynamics". 2015.
Paraules clau
Camassa-holm Equation, Integrable Vector Fields, Singular Ordinary Differential Equations, Traveling Waves.
Grup de recerca
CoDAlab - Control, Dinàmica i Aplicacions

Participants

Arxius