Carregant...
Carregant...

Vés al contingut (premeu Retorn)

Non-integrability of measure preserving maps via Lie symmetries

Autor
Cima, A.; Gasull, A.; Mañosa, V.
Tipus d'activitat
Document cientificotècnic
Data
2015-03-18
Codi
arXiv:1503.05348 [math.DS]
Projecte finançador
Análisis e identificación de sistemas con histéresis usando órbitas periódicas
Control, dinàmica i aplicacions
Repositori
http://hdl.handle.net/2117/26843 Obrir en finestra nova
URL
http://arxiv.org/abs/1503.05348v1 Obrir en finestra nova
Resum
We consider the problem of characterizing, for certain natural number m, the local C^m-non-integrability near elliptic fixed points of smooth planar measure preserving maps. Our criterion relates this non-integrability with the existence of some Lie Symmetries associated to the maps, together with the study of the finiteness of its periodic points. One of the steps in the proof uses the regularity of the period function on the whole period annulus for non-degenerate centers, question that we ...
Citació
Cima, A.; Gasull, A.; Mañosa, V. "Non-integrability of measure preserving maps via Lie symmetries". 2015.
Paraules clau
Cohen map, Difference equations., Integrability and non-integrability of maps, Integrable vector fields, Isochronous centers, Lie symmetries, Measure preserving maps, Period function
Grup de recerca
CoDAlab - Control, Modelització, Identificació i Aplicacions

Participants

Arxius