Carregant...
Carregant...

Vés al contingut (premeu Retorn)

Proper generalized decomposition of a geometrically parametrized heat problem with geophysical applications

Autor
Zlotnik, S.; Diez, P.; Modesto, D.; Huerta, A.
Tipus d'activitat
Article en revista
Revista
International journal for numerical methods in engineering
Data de publicació
2015-09-07
Volum
103
Número
10
Pàgina inicial
737
Pàgina final
758
DOI
https://doi.org/10.1002/nme.4909 Obrir en finestra nova
Repositori
http://hdl.handle.net/2117/77020 Obrir en finestra nova
URL
http://onlinelibrary.wiley.com/doi/10.1002/nme.4909/abstract;jsessionid=4E5C41EE94C8DCE68BEEEB80841815D5.f03t04 Obrir en finestra nova
Resum
The solution of a steady thermal multiphase problem is assumed to be dependent on a set of parameters describing the geometry of the domain, the internal interfaces and the material properties. These parameters are considered as new independent variables. The problem is therefore stated in a multidimensional setup. The proper generalized decomposition (PGD) provides an approximation scheme especially well suited to preclude dramatically increasing the computational complexity with the number of ...
Citació
Zlotnik, S., Diez, P., Modesto, D., Huerta, A. Proper generalized decomposition of a geometrically parametrized heat problem with geophysical applications. "International journal for numerical methods in engineering", 07 Setembre 2015, núm. 10, p. 737-758.
Paraules clau
COMPLEX FLUIDS, DEVICES, DOMAINS, FAMILY, PARTIAL-DIFFERENTIAL-EQUATIONS, SEPARATED REPRESENTATIONS, SHAPE OPTIMIZATION, SIMULATION, SOLVERS, TOPOLOGY OPTIMIZATION, geometry parametrization, geophysics, interface, inverse problem, proper generalized decomposition (PGD), reduced-order model, thermal cross section
Grup de recerca
LACÀN - Mètodes Numèrics en Ciències Aplicades i Enginyeria

Participants

Arxius