Carregant...
Carregant...

Vés al contingut (premeu Retorn)

On the spectrum of the normalized Laplacian of iterated triangulations of graphs

Autor
Xie, P.; Zhang, Z.; Comellas, F.
Tipus d'activitat
Article en revista
Revista
Applied mathematics and computation
Data de publicació
2016-01-15
Volum
273
Número
C
Pàgina inicial
1123
Pàgina final
1129
DOI
https://doi.org/10.1016/j.amc.2015.09.057 Obrir en finestra nova
Projecte finançador
MTM2011-28800-C02-01
Repositori
http://arxiv.org/pdf/1509.04882v1 Obrir en finestra nova
http://hdl.handle.net/2117/81345 Obrir en finestra nova
Resum
The eigenvalues of the normalized Laplacian of a graph provide information on its topological and structural characteristics and also on some relevant dynamical aspects, specifically in relation to random walks. In this paper we determine the spectra of the normalized Laplacian of iterated triangulations of a generic simple connected graph. As an application, we also find closed-forms for their multiplicative degree-Kirchhoff index, Kemeny's constant and number of spanning trees.
Citació
Xie, P., Zhang, Z., Comellas, F. On the spectrum of the normalized Laplacian of iterated triangulations of graphs. "Applied mathematics and computation", 15 Gener 2016, vol. 273, núm. C, p. 1123-1129.
Paraules clau
Complex networks, Degree-Kirchhoff index, Graph triangulations, Kemeny constant, Normalized Laplacian spectrum, Spanning trees
Grup de recerca
COMBGRAPH - Combinatòria, Teoria de Grafs i Aplicacions

Participants

Arxius