Carregant...
Carregant...

Vés al contingut (premeu Retorn)

Decomposition spaces, incidence algebras and Möbius inversion I: basic theory

Autor
Galvez, M.; Kock, J.; Tonks, A.
Tipus d'activitat
Document cientificotècnic
Data
2015-12
Projecte finançador
Geomatría algebraica, simpléctica, aritmética y aplicaciones.
Geometria de varietats i aplicacions
Geometría y topología de variedades, algebra y aplicaciones
Repositori
http://hdl.handle.net/2117/84102 Obrir en finestra nova
URL
http://arxiv.org/abs/1512.07573 Obrir en finestra nova
Resum
This is the first in a series of papers devoted to the theory of decomposition spaces, a general framework for incidence algebras and Möbius inversion, where algebraic identities are realised by taking homotopy cardinality of equivalences of 8-groupoids. A decomposition space is a simplicial 8-groupoid satisfying an exactness condition, weaker than the Segal condition, expressed in terms of generic and free maps in ¿. Just as the Segal condition expresses up-to-homotopy composition, the new co...
Citació
Galvez, M., Kock, J., Tonks, A. "Decomposition spaces, incidence algebras and Möbius inversion I: basic theory". 2015.
Paraules clau
Algebraic Topology, Combinatorics
Grup de recerca
GEOMVAP - Geometria de Varietats i Aplicacions

Participants

Arxius