Carregant...
Carregant...

Vés al contingut (premeu Retorn)

Decomposition spaces, incidence algebras and Möbius inversion II: completeness, length filtration, and finiteness

Autor
Galvez, M.; Kock, J.; Tonks, A.
Tipus d'activitat
Document cientificotècnic
Data
2015-12
Projecte finançador
Geomatr¿a algebraica, simpl¿ctica, aritm¿tica y aplicaciones.
Geometria de varietats i aplicacions
Geometr¿a y topolog¿a de variedades, algebra y aplicaciones
Repositori
http://hdl.handle.net/2117/84103 Obrir en finestra nova
URL
http://arxiv.org/abs/1512.07577 Obrir en finestra nova
Resum
This is part 2 of a trilogy of papers introducing and studying the notion of decomposition space as a general framework for incidence algebras and Möbius inversion, with coefficients in 8-groupoids. A decomposition space is a simplicial 8-groupoid satisfying an exactness condition weaker than the Segal condition. Just as the Segal condition expresses up-to-homotopy composition, the new condition expresses decomposition. In this paper, we introduce various technical conditions on decomposition ...
Citació
Galvez, M., Kock, J., Tonks, A. "Decomposition spaces, incidence algebras and Möbius inversion II: completeness, length filtration, and finiteness". 2015.
Paraules clau
Algebraic Topology, Combinatorics
Grup de recerca
GEOMVAP - Geometria de Varietats i Aplicacions

Participants

Arxius