Graphic summary
  • Show / hide key
  • Information


Scientific and technological production
  •  

1 to 50 of 962 results
  • Simulation of the two-fluid model on incompressible flow with Fractional step method (under review)

     Hou, Xiaofei; Rigola Serrano, Joaquim; Lehmkuhl Barba, Oriol; Oliva Llena, Asensio
    International journal of heat and fluid flow
    Vol. 52, p. 15-27
    DOI: 10.1016/j.ijheatfluidflow.2014.11.002
    Date of publication: 2015-04
    Journal article

    Read the abstract Read the abstract View View Open in new window  Share Reference managers Reference managers Open in new window

    In the present paper, the Fractional Step method usually used in single fluid flow is here extended and applied for the two-fluid model resolution using the finite volume discretization. The use of a projection method resolution instead of the usual pressure-correction method for multi-fluid flow, successfully avoids iteration processes. On the other hand, the main weakness of the two fluid model used for simulations of free surface flows, which is the numerical diffusion of the interface, is also solved by means of the conservative Level Set method (interface sharpening) (Strubelj et al., 2009). Moreover, the use of the algorithm proposed has allowed presenting different free-surface cases with or without Level Set implementation even under coarse meshes under a wide range of density ratios. Thus, the numerical results presented, numerically verified, experimentally validated and converged under high density ratios, shows the capability and reliability of this resolution method for both mixed and unmixed flows.

  • PRACE 10th CALL: Direct Numerical Simulation of Gravity-Driven Bubbly Flows

     Balcázar Arciniega, Néstor Vinicio; Oliva Llena, Asensio; Lehmkuhl Barba, Oriol; Castro Gonzalez, Jesus
    Competitive project

     Share

  • Direct Numerical Simulations of Compressible Turbulent Flows at Moderate Reynolds Numbers: Compressible Flow around a NACA0012 airfoil with incidence

     Rodriguez Pérez, Ivette Maria; Oliva Llena, Asensio; Lehmkuhl Barba, Oriol; Baez Vidal, Aleix; Pedro Costa, Juan Bautista
    Competitive project

     Share

  • Numerical simulations of thermal storage systems. Emphasis on latent energy storage using phase change materials (PCM)  Open access

     Galione Klot, Pedro Andres
    Universitat Politècnica de Catalunya
    Theses

    Read the abstract Read the abstract Access to the full text Access to the full text Open in new window  Share Reference managers Reference managers Open in new window

    Esta tesis se centra en el estudio del uso de materiales de cambio de fase (PCM) en el almacenamiento de energía térmica (TES) y en el desarrollo de herramientas numéricas para su evaluación. El análisis numérico es hoy en día una herramienta indispensable para el diseño, evaluación y optimización de equipos térmicos, complementando las técnicas experimentales.Se realizan dos niveles de análisis, uno en el campo de la dinámica de fluidos computacional, permitiendo la simulación precisa de fenómenos complejos de transferencia de calor y dinámica de fluidos presentes en los problemas de cambio de fase sólido-líquido; y otro en la que las ecuaciones gobernantes son tratadas mediante simplificaciones razonables e integrando correlaciones empíricas, destinado al estudio de sistemas TES en varios ciclos de carga/descarga.Por otra parte, se estudia el almacenamiento térmico para plantas de generación termosolar (CSP). Se evalúan diferentes sistemas de un solo tanque, utilizando tanto las capacidades de energía sensible como latente de los materiales, y se comparan con los sistemas de sales fundidas de doble tanque utilizados actualmente. Además, se propone un concepto novedoso de TES de un único tanque que combina el uso de materiales de relleno sólidos y PCM, con resultados prometedores para su utilización en CSP.En los capítulos 2 y 3, se desarrolla un modelo de entalpía de malla fija para la simulación de la fusión y solidificación. Se utiliza una discretización por volúmenes finitos en mallas no estructuradas en un esquema colocado, y esquemas de integración temporal explícitos. En el primer capítulo, se discuten cuestiones relativas a la forma de la ecuación de energía, el tratamiento de la ecuación de presión, así como el coeficiente de término fuente en la ecuación de momentum introducido por el método de entalpía-porosidad. En el segundo, se trata la posibilidad de tener en cuenta la variación de las propiedades termofísicas con la temperatura. La expansión/contracción térmica asociada al cambio de fase se tiene en cuenta en las ecuaciones de conservación y se tratan en detalle diferentes estrategias para el tratamiento numérico de la ecuación de la energía. Además, se realizan simulaciones de un caso interesante de fusión de un PCM encapsulado, utilizando mallas bi y tridimensionales, y los resultados se comparan con otros de la literatura.En los dos capítulos siguientes, se desarrolla el tema de la simulación numérica de sistemas TES de un único tanque. Estos sistemas están compuestos de un tanque relleno de materiales sólidos y/o PCM, formando un lecho poroso a través del cual circula un fluido de transferencia de calor. La estratificación térmica separa las capas de fluido a diferentes temperaturas. La zona en donde se da el mayor gradiente de temperaturas vertical se conoce generalmente como "termoclina", la cual es deseable mantenerla lo más angosta posible, con el fin de mantener una mayor exergía almacenada. Diferentes diseños de sistemas de un solo tanque -clasificados de acuerdo con el/los material/es de relleno utilizado/s- se evalúan para plantas de CSP. El análisis se realiza evaluando diferentes aspectos, como la energía efectivamente almacenada/liberada y la eficiencia en el uso de la capacidad teórica luego de varios ciclos de carga/descarga, obteniendo resultados independientes del estado térmico inicial. El tiempo de operación no es fijo, sino que depende de la temperatura del fluido de salida, limitada por las restricciones de los equipos que lo reciben (campo solar y bloque de potencia). Se observa una degradación de la estratificación a lo largo de los ciclos debido a las restricciones de temperatura. En este contexto, se presenta concepto de TES novedoso, combinando de diferentes capas de materiales de relleno sólidos y PCM de una manera adecuada. Este concepto, llamado "multi-layered solid-PCM" (MLSPCM) resulta ser una alternativa prometedora para su uso en plantas de CSP.

    The present thesis aims at studying the use of phase change materials (PCM) in thermal energy storage (TES) applications and to develop and implement numerical tools for their evaluation. Numerical analysis is nowadays an indispensable tool for the design, evaluation and optimization of thermal equipment, complementing the experimental techniques. Two levels of analysis are carried out, one in the field of Computational Fluid Dynamics, allowing the accurate simulation of the complex heat transfer and fluid dynamics phenomena present in solid-liquid phase change problems; and another one in which the governing equations are treated assuming several suitable simplifications and integrating empirical correlations, intended for the study of whole thermal storage systems throughout several charge/discharge cycles. Furthermore, the specific application of thermal storage in concentrated solar power (CSP) stations is studied. Different single-tank systems, making use of both sensible and latent energy capacities of the materials, are evaluated and compared against the two-tank molten-salt systems used in current CSP plants. Moreover, a new single-tank TES concept which combines the use of solid and PCM filler materials is proposed, with promising results for its utilization in CSP. In chapters 2 and 3, a numerical fixed-grid enthalpy model for the simulation of the solid-liquid phase change is developed. This technique is implemented using the Finite Volume Method in a collocated unstructured domain discretization and using explicit time integration schemes. Issues regarding the form of the energy equation, the treatment of the pressure equation as well as the momentum source-term coefficient introduced by the enthalpy-porosity method, are described in detail in the first chapter. In the second, the possibility of taking into account the variation of the different thermo-physical properties with the temperature is dealt with. Thermal expansion and contraction associated to the phase change are taken into account in the conservation equations and different strategies for the numerical treatment of the energy equation are discussed in detail. Furthermore, simulations of an interesting case of melting of an encapsulated PCM are carried out using two and three-dimensional meshes, and the results are compared against experimental results from the literature. In the next two chapters, the issue of numerically simulating whole single-tank TES systems is developed. These systems are composed of a single tank filled with solid and/or PCM materials, forming a packed bed through which a heat transfer fluid flows. Thermal stratification separates the fluid layers at different temperatures. The zone in which a steep temperature gradient is produced is called "thermocline", and it is desirable to maintain it as narrow as possible in order to keep a high stored exergy. Different designs of single-tank TES systems ¿classified according to the filler material/s used¿ are evaluated for CSP plants. The analysis is performed evaluating different aspects, as the energy effectively stored/released and the efficiency in the use of the theoretical capacity after several charge/discharge cycles, obtaining results independent of the initial thermal state. The operating time is not fixed, but depends on the temperature of the fluid coming out of the tank, limited by the restrictions of the receiving equipment (solar field and power block). Degradation of the stratification is observed to occur after several cycles, due to the temperature restrictions. In this context, a new concept of single-tank TES is presented, which consists of the combination of different layers of solid and PCM filler materials in a suitable manner, resulting in a lower degradation of the thermocline and increasing the use of the theoretical capacity. This concept, called Multi-Layered Solid PCM (MLSPCM), is demonstrated as a promising alternative for its use in CSP plants.

    Esta tesis se centra en el estudio del uso de materiales de cambio de fase (PCM) en el almacenamiento de energía térmica (TES) y en el desarrollo de herramientas numéricas para su evaluación. El análisis numérico es hoy en día una herramienta indispensable para el diseño, evaluación y optimización de equipos térmicos, complementando las técnicas experimentales. Se realizan dos niveles de análisis, uno en el campo de la dinámica de fluidos computacional, permitiendo la simulación precisa de fenómenos complejos de transferencia de calor y dinámica de fluidos presentes en los problemas de cambio de fase sólido-líquido; y otro en la que las ecuaciones gobernantes son tratadas mediante simplificaciones razonables e integrando correlaciones empíricas, destinado al estudio de sistemas TES en varios ciclos de carga/descarga. Por otra parte, se estudia el almacenamiento térmico para plantas de generación termosolar (CSP). Se evalúan diferentes sistemas de un solo tanque, utilizando tanto las capacidades de energía sensible como latente de los materiales, y se comparan con los sistemas de sales fundidas de doble tanque utilizados actualmente. Además, se propone un concepto novedoso de TES de un único tanque que combina el uso de materiales de relleno sólidos y PCM, con resultados prometedores para su utilización en CSP. En los capítulos 2 y 3, se desarrolla un modelo de entalpía de malla fija para la simulación de la fusión y solidificación. Se utiliza una discretización por volúmenes finitos en mallas no estructuradas en un esquema colocado, y esquemas de integración temporal explícitos. En el primer capítulo, se discuten cuestiones relativas a la forma de la ecuación de energía, el tratamiento de la ecuación de presión, así como el coeficiente de término fuente en la ecuación de momentum introducido por el método de entalpía-porosidad. En el segundo, se trata la posibilidad de tener en cuenta la variación de las propiedades termofísicas con la temperatura. La expansión/contracción térmica asociada al cambio de fase se tiene en cuenta en las ecuaciones de conservación y se tratan en detalle diferentes estrategias para el tratamiento numérico de la ecuación de la energía. Además, se realizan simulaciones de un caso interesante de fusión de un PCM encapsulado, utilizando mallas bi y tridimensionales, y los resultados se comparan con otros de la literatura. En los dos capítulos siguientes, se desarrolla el tema de la simulación numérica de sistemas TES de un único tanque. Estos sistemas están compuestos de un tanque relleno de materiales sólidos y/o PCM, formando un lecho poroso a través del cual circula un fluido de transferencia de calor. La estratificación térmica separa las capas de fluido a diferentes temperaturas. La zona en donde se da el mayor gradiente de temperaturas vertical se conoce generalmente como "termoclina", la cual es deseable mantenerla lo más angosta posible, con el fin de mantener una mayor exergía almacenada. Diferentes diseños de sistemas de un solo tanque -clasificados de acuerdo con el/los material/es de relleno utilizado/s- se evalúan para plantas de CSP. El análisis se realiza evaluando diferentes aspectos, como la energía efectivamente almacenada/liberada y la eficiencia en el uso de la capacidad teórica luego de varios ciclos de carga/descarga, obteniendo resultados independientes del estado térmico inicial. El tiempo de operación no es fijo, sino que depende de la temperatura del fluido de salida, limitada por las restricciones de los equipos que lo reciben (campo solar y bloque de potencia). Se observa una degradación de la estratificación a lo largo de los ciclos debido a las restricciones de temperatura. En este contexto, se presenta concepto de TES novedoso, combinando de diferentes capas de materiales de relleno sólidos y PCM de una manera adecuada. Este concepto, llamado "multi-layered solid-PCM" (MLSPCM) resulta ser una alternativa prometedora para su uso en plantas de CSP

  • Access to the full text
    Unsteady forces on a circular cylinder at critical Reynolds numbers  Open access

     Lehmkuhl Barba, Oriol; Rodriguez Pérez, Ivette Maria; Borrell Pol, Ricard; Chiva Segura, Jorge; Oliva Llena, Asensio
    Physics of fluids
    Vol. 26, p. 125110-1-125110-22
    DOI: 10.1063/1.4904415
    Date of publication: 2014-12-23
    Journal article

    Read the abstract Read the abstract Access to the full text Access to the full text Open in new window  Share Reference managers Reference managers Open in new window

    It is well known that the flow past a circular cylinder at critical Reynolds number combines flow separation, turbulence transition, reattachment of the flow, and further turbulent separation of the boundary layer. The transition to turbulence in the boundary layer causes the delaying of the separation point and an important reduction of the drag force on the cylinder surface known as the drag crisis. In the present work, large-eddy simulations of the flow past a cylinder at Reynolds numbers in the range 2.5 × 105-6.5 × 105 are performed. It is shown how the pressure distribution changes as the Reynolds number increases in an asymmetric manner, occurring first on one side of the cylinder and then on the other side to complete the drop in the drag up to 0.23 at Re = 6.5 × 105. These variations in the pressure profile are accompanied by the presence of a small recirculation bubble, observed as a small plateau in the pressure, and located around ¿ = 105° (measured from the stagnation point). This small recirculation bubble anticipated by the experimental measurements is here well captured by the present computations and its position and size measured at every Reynolds number. The changes in the wake configuration as the Reynolds number increases are also shown and their relation to the increase in the vortex shedding frequency is discussed. The power spectra for the velocity fluctuations are computed. The analysis of the resulting spectrum showed the footprint of Kelvin-Helmholtz instabilities in the whole range. It is found that the ratio of these instabilities frequency to the primary vortex shedding frequency matches quite well the scaling proposed by Prasad and Williamson [“The instability of the separated shear layer from a bluff body,” Phys. Fluids 8, 1347 (1996); “The instability of the shear layer separating from a bluff body,” J. Fluid Mech. 333, 375–492 (1997)] (f KH /fvs ¿ Re 0.67).

    Postprint (author’s final draft)

  • Humidity Optimisation Tool

     Oliva Llena, Asensio
    Competitive project

     Share

  • Numerical investigation of particle-fluid interaction system based on discrete element method  Open access

     Zhang, Hao
    Universitat Politècnica de Catalunya
    Theses

    Read the abstract Read the abstract Access to the full text Access to the full text Open in new window  Share Reference managers Reference managers Open in new window

    Esta tesis se centra en la investigación numérica de sistemas partícula-líquido basado en la técnica Discrete Element Method (DEM). La tesis consta de tres partes, en cada una de las cuales se ha acoplado el método DEM con diferentes esquemas/solucionadores en la fase fluida. En la primera parte, hemos acoplado los métodos DEM con Direct Numerical Simulation (DNS) para estudiar casos de "particle-laden turbulent flow". Se investigó numéricamente el efecto de las colisiones en el comportamiento de las partículas en el flujo turbulento completamente desarrollado en un conducto cuadrado recto. Tres tamaños de partículas se consideraron con diámetros de 50, 100 y 500 micrometros. En primer lugar, el transporte de partículas por el flujo turbulento se estudió en la ausencia del efecto gravitacional. Entonces, la deposición de partículas se estudió bajo el efecto de la fuerza de gravedad normal a la pared, en el que se discutieron la influencia de la tasa de colisiones en re-suspensión de las partículas y la fase final de la distribución de partículas en el suelo del conducto, respectivamente. En la segunda parte, se ha acoplado los métodos DEM con Lattice Boltzmann Method (LBM) para estudiar la sedimentación de partículas en flujo laminar newtoniano. Un nuevo metodo combinado LBM-IBM-DEM se presentó y ha sido aplicado para modelar la sedimentación de dos partículas circulares bi-dimensionales en flujos Newtonianos incompresibles. Se estudiaron casos de sedimentación en una cavidad de una sola esfera, y sedimentación de dos partículas en un canal, las características de la velocidad de la partícula durante la sedimentación y cerca de la base fueron también examinados. En el último caso, un ejemplo numérico de sedimentación de 504 partículas fue finalmente presentado para demostrar la capacidad del método combinado. Además, se ha presentado un método "Particulate Immersed Boundary Method" (PIBM) para la simulación de flujos multifásicos partícula-fluido y ha sido evaluado en dos y tres dimensiones. En comparación con el método IBM convencional, se puede esperar con el mismo número de partículas y de malla un SpeedUp docenas de veces superior en la simulación bidimensional y cientos de veces en la simulación en tres dimensiones. Se llevaron a cabo simulaciones numéricas de la sedimentación de partículas en los flujos newtonianos basados en una combinación LBM - PIBM - DEM, mostrando que el PIBM podría capturar las características de los flujos de partículas en el líquido y fue en efecto un esquema prometedor para la solución de problemas de interacción fluido-partícula. En la última parte, se ha acoplado el método DEM con las ecuaciones promediadas de Navier-Stokes (NS) para estudiar el transporte de partículas y el proceso de desgaste en la pared de una tubería. Se utilizó un caso de transporte neumático para demostrar la capacidad del modelo acoplado. Entonces se simuló el proceso de bombeo de hormigón, de donde se obtuvo la presión hidráulica y la distribución de la velocidad de la fase fluida. Se monitoreó la frecuencia de impacto de las partículas en la tubería doblada, se propuso un nuevo modelo de intensidad de colisión promediado en tiempo para investigar el proceso de desgaste del codo basado en la fuerza de impacto. Se predijo la ubicación del daño máximo desgaste por erosión en el codo. Además, se examinaron las influencias de la velocidad de pulpa, la orientación y el ángulo de curvatura del codo en la ubicación del punto de punción.

    This thesis focuses on the numerical investigation of the particle-fluid systems based on the Discrete Element Method (DEM). The whole thesis consists of three parts, in each part we have coupled the DEM with different schemes/solvers on the fluid phase. In the first part, we have coupled DEM with Direct Numerical Simulation (DNS) to study the particle-laden turbulent flow. The effect of collisions on the particle behavior in fully developed turbulent flow in a straight square duct was numerically investigated. Three sizes of particles were considered with diameters equal to 50 µm, 100 µm and 500 µm. Firstly, the particle transportation by turbulent flow was studied in the absence of the gravitational effect. Then, the particle deposition was studied under the effect of the wall-normal gravity force in which the influence of collisions on the particle resuspension rate and the final stage of particle distribution on the duct floor were discussed, respectively. In the second part, we have coupled DEM with Lattice Boltzmann Method (LBM) to study the particle sedimentation in Newtonian laminar flow. A novel combined LBM-IBM-DEM scheme was presented with its application to model the sedimentation of two dimensional circular particles in incompressible Newtonian flows. Case studies of single sphere settling in a cavity, and two particles settling in a channel were carried out, the velocity characteristics of the particle during settling and near the bottom were examined. At last, a numerical example of sedimentation involving 504 particles was finally presented to demonstrate the capability of the combined scheme. Furthermore, a Particulate Immersed Boundary Method (PIBM) for simulating the fluid-particle multiphase flow was presented and assessed in both two and three-dimensional applications. Compared with the conventional IBM, dozens of times speedup in two-dimensional simulation and hundreds of times in three-dimensional simulation can be expected under the same particle and mesh number. Numerical simulations of particle sedimentation in the Newtonian flows were conducted based on a combined LBM - PIBM - DEM showing that the PIBM could capture the feature of the particulate flows in fluid and was indeed a promising scheme for the solution of the fluid-particle interaction problems. In the last part, we have coupled DEM with averaged Navier-Stokes equations (NS) to study the particle transportation and wear process on the pipe wall. A case of pneumatic conveying was utilized to demonstrate the capability of the coupling model. The concrete pumping process was then simulated, where the hydraulic pressure and velocity distribution of the fluid phase were obtained. The frequency of the particles impacting on the bended pipe was monitored, a new time average collision intensity model based on impact force was proposed to investigate the wear process of the elbow. The location of maximum erosive wear damage in elbow was predicted. Furthermore, the influences of slurry velocity, bend orientation and angle of elbow on the puncture point location were discussed.

    Esta tesis se centra en la investigación numérica de sistemas partícula-líquido basado en la técnica Discrete Element Method (DEM). La tesis consta de tres partes, en cada una de las cuales se ha acoplado el método DEM con diferentes esquemas/solucionadores en la fase fluida. En la primera parte, hemos acoplado los métodos DEM con Direct Numerical Simulation (DNS) para estudiar casos de "particle-laden turbulent flow". Se investigó numéricamente el efecto de las colisiones en el comportamiento de las partículas en el flujo turbulento completamente desarrollado en un conducto cuadrado recto. Tres tamaños de partículas se consideraron con diámetros de 50, 100 y 500 micrometros. En primer lugar, el transporte de partículas por el flujo turbulento se estudió en la ausencia del efecto gravitacional. Entonces, la deposición de partículas se estudió bajo el efecto de la fuerza de gravedad normal a la pared, en el que se discutieron la influencia de la tasa de colisiones en re-suspensión de las partículas y la fase final de la distribución de partículas en el suelo del conducto, respectivamente. En la segunda parte, se ha acoplado los métodos DEM con Lattice Boltzmann Method (LBM) para estudiar la sedimentación de partículas en flujo laminar newtoniano. Un nuevo metodo combinado LBM-IBM-DEM se presentó y ha sido aplicado para modelar la sedimentación de dos partículas circulares bi-dimensionales en flujos Newtonianos incompresibles. Se estudiaron casos de sedimentación en una cavidad de una sola esfera, y sedimentación de dos partículas en un canal, las características de la velocidad de la partícula durante la sedimentación y cerca de la base fueron también examinados. En el último caso, un ejemplo numérico de sedimentación de 504 partículas fue finalmente presentado para demostrar la capacidad del método combinado. Además, se ha presentado un método "Particulate Immersed Boundary Method" (PIBM) para la simulación de flujos multifásicos partícula-fluido y ha sido evaluado en dos y tres dimensiones. En comparación con el método IBM convencional, se puede esperar con el mismo número de partículas y de malla un SpeedUp docenas de veces superior en la simulación bidimensional y cientos de veces en la simulación en tres dimensiones. Se llevaron a cabo simulaciones numéricas de la sedimentación de partículas en los flujos newtonianos basados en una combinación LBM - PIBM - DEM, mostrando que el PIBM podría capturar las características de los flujos de partículas en el líquido y fue en efecto un esquema prometedor para la solución de problemas de interacción fluido-partícula. En la última parte, se ha acoplado el método DEM con las ecuaciones promediadas de Navier-Stokes (NS) para estudiar el transporte de partículas y el proceso de desgaste en la pared de una tubería. Se utilizó un caso de transporte neumático para demostrar la capacidad del modelo acoplado. Entonces se simuló el proceso de bombeo de hormigón, de donde se obtuvo la presión hidráulica y la distribución de la velocidad de la fase fluida. Se monitoreó la frecuencia de impacto de las partículas en la tubería doblada, se propuso un nuevo modelo de intensidad de colisión promediado en tiempo para investigar el proceso de desgaste del codo basado en la fuerza de impacto. Se predijo la ubicación del daño máximo desgaste por erosión en el codo. Además, se examinaron las influencias de la velocidad de pulpa, la orientación y el ángulo de curvatura del codo en la ubicación del punto de punción.

  • Development of flat plate collector with plastic transparent insulation and low-cost overheating protection system

     Kessentini, Hamdi; Castro Gonzalez, Jesus; Capdevila Paramio, Roser; Oliva Llena, Asensio
    Applied energy
    Vol. 133, p. 206-223
    DOI: 10.1016/j.apenergy.2014.07.093
    Date of publication: 2014-11-15
    Journal article

    Read the abstract Read the abstract View View Open in new window  Share Reference managers Reference managers Open in new window

    In this work a flat plate collector (FPC) with plastic transparent insulation materials (TIM) and a low-cost overheating protection system destined for heat supply from 80 to 120 degrees C is presented. A ventilation channel with a thermally actuated door is inserted below the absorber allowing to protect the collector from stagnation conditions, while preserving good performance during normal operation. This collector is intended to have not only a comparable efficiency with the available commercial collectors but also low cost. For this objective, a prototype has been constructed and experimentally tested and in parallel, a numerical model has been implemented. The proposed numerical model is based on the resolution of the different components of the solar collector by means of a modular object-oriented platform. Indoor and outdoor tests have been performed in order to check the effectiveness of the designed overheating protection system and to validate the model. The comparison of the numerical results with experiments has shown a good agreement. Finally, an extended parametric study is performed in order to optimize the collector design: 3125 different configurations of FPC with TIM and ventilation channel were evaluated by means of virtual prototyping. The results allowed to propose the most promising design of a stagnation proof FPC with plastic TIM able to work at an operating temperature of 100 degrees C with good efficiency. The design presented in this paper can be considered promising for increasing the thermal performance of FPC and could be used in industrial applications that need heat at low-to-medium temperature level.

  • Multi-physics coupled simulations: interaction of turbulence with radiation. Application to direct numerical simulation of turbulent Rayleigh-Bénard convection in a radiatively participating medium (Cont.)

     Rodriguez Pérez, Ivette Maria; Oliva Llena, Asensio; Lehmkuhl Barba, Oriol; Borrell Pol, Ricard; Colomer Rey, Guillem; Oyarzun Altamirano, Guillermo
    Competitive project

     Share

  • Access to the full text
    Large eddy and direct numerical simulations of a turbulent water-filled differentially heated cavity of aspect ratio 5  Open access

     Kizildag, Deniz; Trias Miquel, Francesc Xavier; Rodriguez Pérez, Ivette Maria; Oliva Llena, Asensio
    International journal of heat and mass transfer
    Vol. 77, p. 1084-1094
    DOI: 10.1016/j.ijheatmasstransfer.2014.06.030
    Date of publication: 2014-10-01
    Journal article

    Read the abstract Read the abstract Access to the full text Access to the full text Open in new window  Share Reference managers Reference managers Open in new window

    Natural convection in a differentially heated cavity is characterized by different phenomena such as laminar to turbulent flow transition in the boundary layer, turbulent mixing, and thermal stratification in the core of the cavity. In order to predict the thermal and fluid dynamic behavior of the flow in these cavities, the location of transition to turbulence should be accurately determined. In this work, the performance of three subgrid-scale (SGS) models is submitted to investigation in a water-filled cavity of aspect ratio 5 at Rayleigh number Ra = 3 x 10(11). To do so, the models are compared with the solution obtained by means of direct numerical simulation. The models tested are: (i) the wall-adapting local-eddy viscosity (WALE) model, (ii) the QR model, (iii) the WALE model within a variational multiscale framework (VMS-WALE). It has been shown that the VMS-WALE and WALE models perform better in estimating the location of transition to turbulence, and thus their overall behavior is more accurate than the OR model. The results have also revealed that the use of SGS models is justified in this flow as the transition location and consequently the flow structure cannot be captured properly if no model is used for the tested spatial resolution. (C) 2014 Elsevier Ltd. All rights reserved.

    Natural convection in a differentially heated cavity is characterized by different phenomena such as laminar to turbulent flow transition in the boundary layer, turbulent mixing, and thermal stratification in the core of the cavity. In order to predict the thermal and fluid dynamic behavior of the flow in these cavities, the location of transition to turbulence should be accurately determined. In this work, the performance of three subgrid-scale (SGS) models is submitted to investigation in a water-filled cavity of aspect ratio 5 at Rayleigh number Ra=3e11. To do so, the models are compared with the solution obtained by means of direct numerical simulation. The models tested are: (i) the wall-adapting local-eddy viscosity (WALE) model, (ii) the QR model, (iii) the WALE model within a variational multiscale framework (VMS-WALE). It has been shown that the VMS-WALE and WALE models perform better in estimating the location of transition to turbulence, and thus their overall behavior is more accurate than the QR model. The results have also revealed that the use of SGS models is justified in this flow as the transition location and consequently the flow structure cannot be captured properly if no model is used for the tested spatial resolution.

  • Access to the full text
    Wind speed effect on the flow field and heat transfer around a parabolic trough solar collector  Open access

     Amine Hachicha, Ahmed; Rodriguez Pérez, Ivette Maria; Oliva Llena, Asensio
    Applied energy
    Vol. 130, p. 200-211
    DOI: 10.1016/j.apenergy.2014.05.037
    Date of publication: 2014-10-01
    Journal article

    Read the abstract Read the abstract Access to the full text Access to the full text Open in new window  Share Reference managers Reference managers Open in new window

    Parabolic trough solar collectors are currently one of the most mature and prominent solar technology for the production of electricity. These systems are usually located in an open terrain where strong winds may be found, and could affect their stability and optical performance, as well as the heat exchange between the solar receiver and the ambient air. In this context, a wind flow analysis around a parabolic trough solar collector under real working conditions is performed. A numerical aerodynamic and heat transfer study based on Large Eddy Simulations is carried out to characterise the wind loads and heat transfer coefficients. After the study carried out by the authors in an earlier work (Hachicha et al. 2013) at ReW1=3.9e5, computations are performed at a higher Reynolds number of ReW2=1e6, and for various pitch angles. The effects of wind speed and pitch angle on the averaged and instantaneous flow are assessed. The aerodynamic coefficients are calculated around the solar collector and validated with measurements performed in wind tunnel tests. The variation of the heat transfer coefficient around the heat collector element with the Reynolds number is presented and compared to the circular cylinder in cross-flow. The unsteady flow is studied for three pitch angles: 0; 45 and 90 and different structures and recirculation regions are identified. A spectral analysis around the parabola and its receiver is also carried out in order to detect the most relevant frequencies related to the vortex shedding mechanism which affects the stability of the collector.

    Parabolic trough solar collectors are currently one of the most mature and prominent solar technology for the production of electricity. These systems are usually located in an open terrain where strong winds may be found, and could affect their stability and optical performance, as well as the heat exchange between the solar receiver and the ambient air. In this context, a wind flow analysis around a parabolic trough solar collector under real working conditions is performed. A numerical aerodynamic and heat transfer study based on Large Eddy Simulations is carried out to characterise the wind loads and heat transfer coefficients. After the study carried out by the authors in an earlier work (Hachicha et al. 2013) at ReW1=3.9e5, computations are performed at a higher Reynolds number of ReW2=1e6, and for various pitch angles. The effects of wind speed and pitch angle on the averaged and instantaneous flow are assessed. The aerodynamic coefficients are calculated around the solar collector and validated with measurements performed in wind tunnel tests. The variation of the heat transfer coefficient around the heat collector element with the Reynolds number is presented and compared to the circular cylinder in cross-flow. The unsteady flow is studied for three pitch angles: 0 ; 45 and 90 and different structures and recirculation regions are identified. A spectral analysis around the parabola and its receiver is also carried out in order to detect the most relevant frequencies related to the vortex shedding mechanism which affects the stability of the collector.

  • Numerical Simulation of Multiphase Flows: Level-Set Techniques  Open access

     Balcázar Arciniega, Néstor Vinicio
    Universitat Politècnica de Catalunya
    Theses

    Read the abstract Read the abstract Access to the full text Access to the full text Open in new window  Share Reference managers Reference managers Open in new window

    Ésta tesis se enfoca en el desarrollo de métodos numéricos basados en la aplicación de técnicas level-set para la Simulación Numérica Directa (DNS) de flujos interfaciales y flujos de superficie libre, con el objetivo de ser usados tanto en investigación básica como en aplicaciones industriales.Primero, el método level-set conservativo desarrollado para la captura de interfaces entre dos fluidos, es combinado con un esquema de proyección adaptado para un fluido de densidad variable, con el objetivo de simular flujos de dos fases en mallas no estructuradas. Todas las ecuaciones son discretizadas mediante una aproximación de volúmenes finitos sobre un arreglo de malla colocada. Un esquema de alto orden cuya formulación se basa en el uso de limitadores de flujo, es usado para la discretización de los términos convectivos, mientras que los flujos difusivos son calculados mediante diferencias centradas. Los gradientes son calculados mediante el método de los mínimos cuadrados, en tanto que se asume que las propiedades físicas varían suavemente en una zona estrecha alrededor de la interface con el objetivo de evitar inestabilidades numéricas. La tensión superficial es incorporada mediante el enfoque de la fuerza superficial continua. El método numérico es validado con respecto a los datos experimentales y numéricos reportados en la literatura científica.Segundo, el método level-set conservativo es aplicado en el estudio del flujo de burbujas conducidas por la gravedad. A diferencia de los casos precedentes, se aplica una condición de frontera periódica en la dirección vertical, con el objetivo de simular un canal de longitud infinita. La forma y velocidad terminal de una burbuja ascenciendo en un líquido inicialmente en reposo son calculadas y contrastadas con los resultados reportados en la literatura. Adicionalmente se estudia la interacción hidrodinámica de un par de burbujas para diferentes configuraciones, y finalmente se explora la interacción de un emjambre de burbujas ascendiendo en un canal vertical.En la tercera parte de ésta tesis, se presenta una nueva metodología para la simulación de flujos interfaciales conducidos por la tensión superficial, mediante la combinación de los métodos volume-of-fluid y level-set. La idea principal se basa en usar el método volume-of-fluid para advectar la interface, minimizando las pérdidas de masa, mientras que las propiedades geométricas de la interface se calculan a partir de una función level-set obtenida mediante un algoritmo geométrico iterativo. La propiedades geométricas así calculadas son usadas para el cómputo de la tensión superficial. El método numérico es validado mediante casos bi y tri-dimensionales bien conocidos en la literatura científica. La conservación de la masa es excelente en tanto que la precisión del método es altamente satisfactoria incluso en los casos más complejos.En la cuarta parte de ésta tesis se presenta un nuevo método level-set de múltiples marcadores. Éste método es diseñado para llevar a cabo simulaciones numéricas de partículas de fluido deformables, evitando la coalescencia numérica de las interfaces. Cada partícula de fluido es capturada por una función level-set distinta, así, diferentes interfaces pueden ser resueltas en el mismo volumen de control, evitando la coalescencia artificial y potencialmente no-física de las partículas fluidas. Por lo tanto, las burbujas (o gotas) pueden acercarce y colisionar. El algoritmo es propuesto en el contexto del método level-set conservativo, mientras que la tensión superficial se resuelve mediante una adaptación del enfoque de la fuerza superficial continua. Para su validación, se estudia el impacto conducido por la gravedad de una gota sobre una interface líquido-líquido; luego, se estudia la collisión de dos gotas con salida rebotante, y finalmente el método numérico es aplicado para la simulación de un enjambre de burbujas sin coalescencia numérica.

    This thesis aims at developing numerical methods based on level-set techniques suitable for the direct numerical simulation (DNS) of free surface and interfacial flows, in order to be used on basic research and industrial applications. First, the conservative level-set method for capturing the interface between two fluids is combined with a variable density projection scheme in order to simulate incompressible two-phase flows on unstructured meshes. All equations are discretized by using a finite-volume approximation on a collocated grid arrangement. A high order scheme based on a flux limiter formulation, is adopted for approximating the convective terms, while the diffusive fluxes are centrally differenced. Gradients are computed by the least-squares approach, whereas physical properties are assumed to vary smoothly in a narrow band around the interface to avoid numerical instabilities. Surface tension force is calculated according to the continuous surface force approach. The numerical method is validated against experimental and numerical data reported in the scientific literature. Second, the conservative level-set method is applied to study the gravity-driven bubbly flow. Unlike the cases presented in the first part, a periodic boundary condition is applied in the vertical direction, in order to mimic a channel of infinite length. The shape and terminal velocity of a single bubble which rises in a quiescent liquid are calculated and validated against experimental results reported in the literature. In addition, different initial arrangements of bubble pairs were considered to study its hydrodynamic interaction, and, finally the interaction of multiple bubbles is explored in a periodic vertical duct, allowing their coalescence. In the third part of this thesis, a new methodology is presented for simulation of surface-tension-driven interfacial flows by combining volume-of-fluid with level-set methods. The main idea is to benefit from the advantage of each strategy, which is to minimize mass loss through the volume-of-fluid method, and to keep a fine description of the interface curvature using a level-set function. With the information of the interface given by the volume-of-fluid method, a signed distance function is reconstructed following an iterative geometric algorithm, which is used to compute surface tension force. This numerical method is validated on 2D and 3D test cases well known in the scientific literature. The simulations reveal that numerical schemes afford qualitatively similar results to those obtained by the conservative level-set method. Mass conservation is shown to be excellent, while geometrical accuracy remains satisfactory even for the most complex cases involving topology changes. In the fourth part of the thesis a novel multiple marker level-set method is presented. This method is deployed to perform numerical simulation of deformable fluid particles without numerical coalescence of their interfaces, which is a problem inherent to standard interface tracking methodologies (e.g. level-set and volume of fluid). Each fluid particle is described by a separate level-set function, thus, different interfaces can be solved in the same control volume, avoiding artificial and potentially unphysical coalescence of fluid particles. Therefore, bubbles or droplets are able to approach each other closely, within the size of one grid cell, and can even collide. The proposed algorithm is developed in the context of the conservative levelset method, whereas, surface tension is modeled by the continuous surface force approach. The pressure-velocity coupling is solved by the fractional-step projection method. For validation of the proposed numerical method, the gravity-driven impact of a droplet on a liquid-liquid interface is studied; then, the binary droplet collision with bouncing outcome is examined, and finally, it is applied on simulation of gravity-driven bubbly flow in a vertical column. The study of these cases contributed to shed some light into physics present in bubble and droplet flows.

    Ésta tesis se enfoca en el desarrollo de métodos numéricos basados en la aplicación de técnicas level-set para la Simulación Numérica Directa (DNS) de flujos interfaciales y flujos de superficie libre, con el objetivo de ser usados tanto en investigación básica como en aplicaciones industriales. Primero, el método level-set conservativo desarrollado para la captura de interfaces entre dos fluidos, es combinado con un esquema de proyección adaptado para un fluido de densidad variable, con el objetivo de simular flujos de dos fases en mallas no estructuradas. Todas las ecuaciones son discretizadas mediante una aproximación de volúmenes finitos sobre un arreglo de malla colocada. Un esquema de alto orden cuya formulación se basa en el uso de limitadores de flujo, es usado para la discretización de los términos convectivos, mientras que los flujos difusivos son calculados mediante diferencias centradas. Los gradientes son calculados mediante el método de los mínimos cuadrados, en tanto que se asume que las propiedades físicas varían suavemente en una zona estrecha alrededor de la interface con el objetivo de evitar inestabilidades numéricas. La tensión superficial es incorporada mediante el enfoque de la fuerza superficial continua. El método numérico es validado con respecto a los datos experimentales y numéricos reportados en la literatura científica. Segundo, el método level-set conservativo es aplicado en el estudio del flujo de burbujas conducidas por la gravedad. A diferencia de los casos precedentes, se aplica una condición de frontera periódica en la dirección vertical, con el objetivo de simular un canal de longitud infinita. La forma y velocidad terminal de una burbuja ascenciendo en un líquido inicialmente en reposo son calculadas y contrastadas con los resultados reportados en la literatura. Adicionalmente se estudia la interacción hidrodinámica de un par de burbujas para diferentes configuraciones, y finalmente se explora la interacción de un emjambre de burbujas ascendiendo en un canal vertical. En la tercera parte de ésta tesis, se presenta una nueva metodología para la simulación de flujos interfaciales conducidos por la tensión superficial, mediante la combinación de los métodos volume-of-fluid y level-set. La idea principal se basa en usar el método volume-of-fluid para advectar la interface, minimizando las pérdidas de masa, mientras que las propiedades geométricas de la interface se calculan a partir de una función level-set obtenida mediante un algoritmo geométrico iterativo. La propiedades geométricas así calculadas son usadas para el cómputo de la tensión superficial. El método numérico es validado mediante casos bi y tri-dimensionales bien conocidos en la literatura científica. La conservación de la masa es excelente en tanto que la precisión del método es altamente satisfactoria incluso en los casos más complejos. En la cuarta parte de ésta tesis se presenta un nuevo método level-set de múltiples marcadores. Éste método es diseñado para llevar a cabo simulaciones numéricas de partículas de fluido deformables, evitando la coalescencia numérica de las interfaces. Cada partícula de fluido es capturada por una función level-set distinta, así, diferentes interfaces pueden ser resueltas en el mismo volumen de control, evitando la coalescencia artificial y potencialmente no-física de las partículas fluidas. Por lo tanto, las burbujas (o gotas) pueden acercarce y colisionar. El algoritmo es propuesto en el contexto del método level-set conservativo, mientras que la tensión superficial se resuelve mediante una adaptación del enfoque de la fuerza superficial continua. Para su validación, se estudia el impacto conducido por la gravedad de una gota sobre una interface líquido-líquido; luego, se estudia la collisión de dos gotas con salida rebotante, y finalmente el método numérico es aplicado para la simulación de un enjambre de burbujas sin coalescencia numérica.

  • DNS and LES of viscoplastic-type non-Newtonian fluid flows

     Carmona Muñoz, Angel; Lehmkuhl Barba, Oriol; Perez Segarra, Carlos David; Oliva Llena, Asensio
    iTi - Conference on Turbulence
    Presentation's date: 2014-09-22
    Presentation of work at congresses

     Share Reference managers Reference managers Open in new window

  • Access to the full text
    Influence of rotation on the flow over cylinder at RE=5000  Open access

     Aljure Osorio, David E.; Rodriguez Pérez, Ivette Maria; Lehmkuhl Barba, Oriol; Perez Segarra, Carlos David; Oliva Llena, Asensio
    International ERCOFTAC Symposium on Engineering Turbulence Modelling and Measurements
    Presentation's date: 2014-09-19
    Presentation of work at congresses

    Access to the full text Access to the full text Open in new window  Share Reference managers Reference managers Open in new window

  • Dynamic thermoelastic analysis of thermocline-like storage tanks

     Gonzalez Acedo, Ignacio; Lehmkuhl Barba, Oriol; Perez Segarra, Carlos David; Oliva Llena, Asensio
    Solar Power and Chemical Energy Systems Conference
    Presentation's date: 2014-09-19
    Presentation of work at congresses

    Read the abstract Read the abstract  Share Reference managers Reference managers Open in new window

    Thermocline storage system is considered as a cheaper alternative to the common two-tank molten salt approach. However, its configuration and performance might lead to a catastrophic structural failure known as thermal ratcheting. It may occur when a tank filled with particulate solids is cyclically heated and cooled. This paper aims at studying the transient evolution of thermocline tank wall stresses, taking into account both thermal and mechanical loads. A complete numerical methodology to deal with the fluid-structure interaction problem, based on a thermoelastic model for the shell, is used. For validation purposes and getting better understanding of the stress-strain response of the structure, Solar One Pilot Plant thermocline case is reproduced. Although some experimental data obtained from the literature suffers of large uncertainty, the numerical results show consistent good agreement.

  • Access to the full text
    On the flow past a circular cylinder from critical to super-critical Reynolds numbers: wake topology and vortex shedding  Open access

     Rodriguez Pérez, Ivette Maria; Lehmkuhl Barba, Oriol; Chiva Segura, Jorge; Borrell Pol, Ricard; Oliva Llena, Asensio
    International ERCOFTAC Symposium on Engineering Turbulence Modelling and Measurements
    Presentation's date: 2014-09-18
    Presentation of work at congresses

    Access to the full text Access to the full text Open in new window  Share Reference managers Reference managers Open in new window

  • Preliminary results of a 7kW single-effect small capacity pre-industrial LiBr-H2O air-cooled absorption machine

     Farnos Baulenas, Joan; Castro Gonzalez, Jesus; García-Rivera, Eduardo; Morales Ruiz, Sergio; Oliva Llena, Asensio; Kizildag, Deniz
    ISES Europe Solar Conference
    Presentation's date: 2014-09-18
    Presentation of work at congresses

    Read the abstract Read the abstract  Share Reference managers Reference managers Open in new window

    The aim of the paper is to describe the thermal design of an own-developed pr-industrial absorption machine of small capacity, single effect configuration using LiBr-H2O as working fluid and air-cooled, and then evaluating the preliminary operational results, i.e. the performance and the cooling capacity. This chiller is conceived for low temperature heat sources, e. g. , solar cooling or waste heat. A mathematical modelisation under transient condtions of the single-effect LiBr-H2O - air-cooled absorption chiller has been developed. Thisis very valuable to predict the thermal behaviour of the absorption machine and their interaction with the other components and, therefore for defining its control strategy. Numerical results are obtained and the validation is performed against experimental data, due to there are dependences with some empiric parameters. The numerical model to simulate the thermal and fluid dynamical behaviour of the absorption machine has been implemented using the NEST platform (object-oriented numerical tool).

  • A Multi-functional ventilated façade model within a parallel and object-oriented numerical platform for the prediction of the thermal performance of buildings

     Kizildag, Deniz; Lehmkuhl Barba, Oriol; Oliva Llena, Asensio; Rigola Serrano, Joaquim
    ISES Europe Solar Conference
    Presentation's date: 2014-09-18
    Presentation of work at congresses

     Share Reference managers Reference managers Open in new window

  • Local and overall wind forces acting on parabolic trough collectors

     Rodriguez Pérez, Ivette Maria; Lehmkuhl Barba, Oriol; Borrell Pol, Ricard; Oliva Llena, Asensio
    Solar Power and Chemical Energy Systems Conference
    Presentation's date: 2014-09-17
    Presentation of work at congresses

     Share Reference managers Reference managers Open in new window

  • Advanced multi-physics modeling of solar towers using object-oriented software and HPC platforms

     Colomer Rey, Guillem; Chiva Segura, Jorge; Lehmkuhl Barba, Oriol; Oliva Llena, Asensio
    Solar Power and Chemical Energy Systems Conference
    Presentation's date: 2014-09-16
    Presentation of work at congresses

    Read the abstract Read the abstract  Share Reference managers Reference managers Open in new window

    This paper presents an advanced methodology for the detailed modeling of the heat transfer and fluid dynamics phenomena in solar tower receivers. It has been carried out in the framework of a more ambitious enterprise which aims at modeling all the complex heat transfer and fluid dynamics phenomena present in central solar receivers. The global model is composed of 4 sub-models (heat conduction, two-phase flow, solar and thermal radiation and natural convection) which are described. Results of the numerical model obtained so far are also presented and discussed.

  • Parametric study of two-tank TES systems for CSP plants

     Torras Ortiz, Santiago; Perez Segarra, Carlos David; Rodriguez Pérez, Ivette Maria; Rigola Serrano, Joaquim; Oliva Llena, Asensio
    Solar Power and Chemical Energy Systems Conference
    Presentation's date: 2014-09-16
    Presentation of work at congresses

    Read the abstract Read the abstract  Share Reference managers Reference managers Open in new window

    The two-tank thermal energy storage (TES) system is the most used technology for storage in concentrating solar power (CSP) plants. This work focuses on a parametric study, which aims to identify the most important parameters on TES system, in order to improve the design and increase the performance of the plant. Three parameters have been considered: meteorological data, insulation thickness of the storage tank, and configuration of the foundation of the storage tank. The effect of each parameter is evaluated using numerical simulations based on a modular object-oriented methodology. The main issues related to the mathematical models and its numerical methodology are also presented in this paper.

  • Thermal analysis of a receiver for linear Fresnel reflectors

     Guadamud Anchundia, Erick Alejandro; Oliva Llena, Asensio; Lehmkuhl Barba, Oriol; Rodriguez Pérez, Ivette Maria; Gonzalez Acedo, Ignacio
    Solar Power and Chemical Energy Systems Conference
    Presentation's date: 2014-09
    Presentation of work at congresses

    Read the abstract Read the abstract  Share Reference managers Reference managers Open in new window

    This paper presents an advanced methodology for the detailed modeling of the heat transfer and dynamics phenomena in Linear Fresnel receivers. The present work aims at modeling Linear Fresnel receiver by proposing a parallel modular object-oriented methodology which considers the different elements of the receiver (e.g. Insulation material, glass cover, tube, pipe, etc.). The global model is composed of 4 sub models (heat conduction, two/single-phase flow, thermal radiation and natural convection) which are described. Results of the numerical model obtained so far are also presented and discussed.

  • Three-dimensional numerical simulation of fluid flow and heat transfer in fin-and-tube heat exchangers at different flow regimes  Open access

     Paniagua Sánchez, Leslye
    Department of Heat Engines, Universitat Politècnica de Catalunya
    Theses

    Read the abstract Read the abstract Access to the full text Access to the full text Open in new window  Share Reference managers Reference managers Open in new window

    Esta tesis tiene como objetivo unificar dos ramas de trabajo dentro del Centro Tecnológico de Transferencia de Calor (CTTC). Por un lado, se ha realizado un amplio trabajo experimental durante los últimos años. Este trabajo experimental se ha complementado con modelos numéricos para el estudio de intercambiadores de calor de tipo aleta-tubo. Tales modelos numéricos pueden considerarse una herramienta numérica de bajo coste empleada con propósitos de diseño principalmente. Por otro lado, los científicos que trabajan en el centro han desarrollado con éxito un código de Dinámica de Fluidos Computacionales (TermoFluids). Este código de alto rendimiento ha sido ampliamente utilizado principalmente para predecir flujos complejos de gran interés académico. La idea de unir a estas dos ramas, proviene de la necesidad de una plataforma numérica fiable con datos locales propios del flujo y de la transferencia de calor en diversas aplicaciones de intercambiadores de calor. Ser capaz de generar coeficientes locales de transferencia de calor para abastecer con datos propios los modelos existentes de bajo coste, permitirá la correcta predicción del rendimiento de dichos dispositivos.Para lograr estos objetivos, se han hecho varias contribuciones al código TermoFluids que está en continua evolución. Algunas de las mayores cuestiones que se plantean implican la generación de mallas adecuadas y asequibles, la implementación y validación de la condición de contorno periódica tridimensional y el acoplamiento de los diferentes dominios para el estudio de casos con diferentes comportamientos físicos, como desarrollo transitorio e inercia térmica. La turbulencia está presente en la mayoría de los flujos de ingeniería, y los intercambiadores de calor de evaporadores para refrigeración no son una excepción. La presencia de muchos tubos (que actúan como obstáculos para el fluido) colocados en diferentes configuraciones y el hecho de que el flujo también está confinado por aletas, crean características de flujo tridimensionales complejas que tienen generalmente régimen turbulento o en transición. Por lo tanto, se analiza la convección forzada turbulenta en una matriz de pines delimitados por paredes. simulando las grandes escalas de turbulencia y modelando las pequeñas (LES) con el fin de evaluar el desempeño de los tres modelos seleccionados, a saber WALE, QR y VMS. Los números de Reynolds establecidos para el estudio son 3000, 10000 y 30000. Algunos de los principales resultados que se incluyen son el coeficiente de presión alrededor los cilindros, el número de Nusselt promedio en las paredes y la vorticidad del flujo. La parte final de la tesis se dedica a estudiar el flujo tridimensional y los parámetros de transferencia de calor encontrados en un intercambiador de calor de tipo aleta-tubo utilizado para la refrigeración doméstica en equipos de 'no-escarcha'. Las implementaciones del código y el postproceso numéricos se validan en un caso muy similar para un intercambiador de calor con dos filas de tubos a bajos Reynolds para el cual se dispone de datos experimentales. El siguiente análisis que se presenta es una configuración típica para evaporadores 'no-escarcha' con paso de aleta doble (para el que se tiene muy poca información numérica en la literatura). Se considera el acoplamiento conjugado de la transferencia de calor convectiva entre fluido y sólido y conductiva dentro de la aleta. La influencia de algunos parámetros geométricos y de régimen de flujo se analizan con propósitos de diseño. En conclusión, las contribuciones generales de esta tesis junto con el código computacional ya existente, ha demostrado ser capaz de realizar con éxito simulaciones tridimensionales para predecir las características del flujo y los mecanismos responsables de la transferencia de calor en intercambiadores de calor de tipo aleta-tubo.

    This thesis aims at unifying two distinct branches of work within the Heat Transfer Technological Center (CTTC). On one side, extensive experimental work has been done during the past years by the researchers of the laboratory. This experimental work has been complemented with numerical models for the calculation of fin and tube heat exchangers thermal and fluid dynamic behavior. Such numerical models can be referred to as fast numerical tool which can be used for industrial rating and design purposes. On the other hand, the scientists working at the research center have successfully developed a general purpose multi-physics Computational Fluid Dynamics (CFD) code (TermoFluids). This high performance CFD solver has been extensively used by the co-workers of the group mainly to predict complex flows of great academic interest. The idea of bringing together this two branches, comes from the necessity of a reliable numerical platform with detailed local data of the flow and heat transfer on diverse heat exchanger applications. Being able to use local heat transfer coefficients as an input on the rating and design tool will lead to affordable and accurate prediction of industrial devices performance, by which the center can propose enhanced alternatives to its industrial partners. To accomplish these goals, several contributions have been made to the existing TermoFluids software which is in continuous evolution in order to meet the competitive requirements. The most significant problematics to adequately attack this problem are analyzed and quite interesting recommendations are given. Some of the challenging arising issues involve the generation of suitable and affordable meshes, the implementation and validation of three dimensional periodic boundary condition and coupling of different domains with important adjustments for the study of cases with different flow physics like time steps and thermal development. Turbulence is present in most of engineering flows, and refrigeration evaporator heat exchangers are not an exception. The presence of many tubes (acting like bluff bodies for the flow) arranged in different configurations and the fact that the flow is also confined by fins, create complex three dimensional flow features that have usually turbulent or transition to turbulent regime. Therefore, three dimensional turbulent forced convection in a matrix of wall-bounded pins is analyzed. Large Eddy Simulations (LES) are performed in order to assess the performance of three different subgrid-scale models, namely WALE, QR and VMS. The Reynolds numbers of the study were set to 3000, 10000 and 30000. Some of the main results included are the pressure coefficient around the cylinders, the averaged Nusselt number at the endwalls and vorticity of the flow. The final part of the thesis is devoted to study the three dimensional fluid flow and conjugated heat transfer parameters encountered in a plate fin and tube heat exchanger used for no-frost refrigeration. The numerical code and post processing tools are validated with a very similar but smaller case of a heat exchanger with two rows of tubes at low Reynolds for which experimental data is available. The next analysis presented is a typical configuration for no-frost evaporators with double fin spacing (for which very few numerical data is reported in the scientific literature). Conjugated convective heat transfer in the flow field and heat conduction in the fins are coupled and considered. The influence of some geometrical and flow regime parameters is analyzed for design purposes. In conclusion, the implementations and general contributions of the present thesis together with the previous existent multi-physics computational code, has proved to be capable to perform successful top edge three dimensional simulations of the flow features and heat transfer mechanisms observed on heat exchanger devices.

    Esta tesis tiene como objetivo unificar dos ramas de trabajo dentro del Centro Tecnológico de Transferencia de Calor (CTTC). Por un lado, se ha realizado un amplio trabajo experimental durante los últimos años. Este trabajo experimental se ha complementado con modelos numéricos para el estudio de intercambiadores de calor de tipo aleta-tubo. Tales modelos numéricos pueden considerarse una herramienta numérica de bajo coste empleada con propósitos de diseño principalmente. Por otro lado, los científicos que trabajan en el centro han desarrollado con éxito un código de Dinámica de Fluidos Computacionales (TermoFluids). Este código de alto rendimiento ha sido ampliamente utilizado principalmente para predecir flujos complejos de gran interés académico. La idea de unir a estas dos ramas, proviene de la necesidad de una plataforma numérica fiable con datos locales propios del flujo y de la transferencia de calor en diversas aplicaciones de intercambiadores de calor. Ser capaz de generar coeficientes locales de transferencia de calor para abastecer con datos propios los modelos existentes de bajo coste, permitirá la correcta predicción del rendimiento de dichos dispositivos. Para lograr estos objetivos, se han hecho varias contribuciones al código TermoFluids que está en continua evolución. Algunas de las mayores cuestiones que se plantean implican la generación de mallas adecuadas y asequibles, la implementación y validación de la condición de contorno periódica tridimensional y el acoplamiento de los diferentes dominios para el estudio de casos con diferentes comportamientos físicos, como desarrollo transitorio e inercia térmica. La turbulencia está presente en la mayoría de los flujos de ingeniería, y los intercambiadores de calor de evaporadores para refrigeración no son una excepción. La presencia de muchos tubos (que actúan como obstáculos para el fluido) colocados en diferentes configuraciones y el hecho de que el flujo también está confinado por aletas, crean características de flujo tridimensionales complejas que tienen generalmente régimen turbulento o en transición. Por lo tanto, se analiza la convección forzada turbulenta en una matriz de pines delimitados por paredes. simulando las grandes escalas de turbulencia y modelando las pequeñas (LES) con el fin de evaluar el desempeño de los tres modelos seleccionados, a saber WALE, QR y VMS. Los números de Reynolds establecidos para el estudio son 3000, 10000 y 30000. Algunos de los principales resultados que se incluyen son el coeficiente de presión alrededor los cilindros, el número de Nusselt promedio en las paredes y la vorticidad del flujo. La parte final de la tesis se dedica a estudiar el flujo tridimensional y los parámetros de transferencia de calor encontrados en un intercambiador de calor de tipo aleta-tubo utilizado para la refrigeración doméstica en equipos de 'no-escarcha'. Las implementaciones del código y el postproceso numéricos se validan en un caso muy similar para un intercambiador de calor con dos filas de tubos a bajos Reynolds para el cual se dispone de datos experimentales. El siguiente análisis que se presenta es una configuración típica para evaporadores 'no-escarcha' con paso de aleta doble (para el que se tiene muy poca información numérica en la literatura). Se considera el acoplamiento conjugado de la transferencia de calor convectiva entre fluido y sólido y conductiva dentro de la aleta. La influencia de algunos parámetros geométricos y de régimen de flujo se analizan con propósitos de diseño. En conclusión, las contribuciones generales de esta tesis junto con el código computacional ya existente, ha demostrado ser capaz de realizar con éxito simulaciones tridimensionales para predecir las características del flujo y los mecanismos responsables de la transferencia de calor en intercambiadores de calor de tipo aleta-tubo

  • Numerical simulation of multiphase immiscible flow on unstructured meshes  Open access

     Jofre Cruanyes, Lluís
    Department of Heat Engines, Universitat Politècnica de Catalunya
    Theses

    Read the abstract Read the abstract Access to the full text Access to the full text Open in new window  Share Reference managers Reference managers Open in new window

    Aquesta tesi té com a objectiu desenvolupar una base per a la simulació numèrica de fluids multi-fase immiscibles. Aquesta estratègia, encara que limitada per la potència computacional dels computadors actuals, és potencialment molt important, ja que la majoria de la fenomenologia d'aquests fluids sovint passa en escales temporals i especials on les tècniques experimentals no poden ser utilitzades. En particular, aquest treball es centra en desenvolupar discretitzacions numèriques aptes per a malles no-estructurades en tres dimensions (3-D). En detall, el primer capítol delimita els casos multifásics considerats al cas en que els components són fluids immiscibles. En particular, la tesi es centra en aquells casos en que dos o més fluids diferents són separats per interfases, i per tant, corresponentment anomenats fluxos separats. A més a més, un cop el tipus de flux es determinat, el capítol introdueix les característiques físiques i els models disponibles per predir el seu comportament, així com també la formulació matemàtica i les tècniques numèriques desenvolupades en aquesta tesi.El segon capítol introdueix i analitza un nou mètode ¿Volume-of-Fluid¿ (VOF) apte per a capturar interfases en malles Cartesianes i no-estructurades 3-D. El mètode reconstrueix les interfases com aproximacions ¿piecewise planar approximations¿ (PLIC) de primer i segon ordre, i advecciona els volums amb un algoritme geomètric ¿unsplit Lagrangian-Eulerian¿ (LE) basat en construïr els poliedres a partir de les velocitats dels vèrtexs de les celdes. D'aquesta manera, les situacions de sobre-solapament entre poliedres són minimitzades.Complementant el capítol anterior, el tercer proposa una estratègia de paral·lelització pel mètode VOF. L'obstacle principal és que els costos computacionals estan concentrats en les celdes de l'interfase entre fluids. En conseqüència, si la interfase no està ben distribuïda, les estratègies de ¿domain decomposition¿ (DD) resulten en distribucions de càrrega desequilibrades. Per tant, la nova estratègia està basada en un procés de balanceig de càrrega complementària a la DD. La seva eficiència en paral·lel ha sigut analitzada utilitzant fins a 1024 CPU-cores, i els resultats obtinguts mostren uns guanys respecte l'estratègia DD de fins a 12x, depenent del tamany de la interfase i de la distribució inicial.El quart capítol descriu la discretització de les equacions de Navier-Stokes per a una sola fase, per després estendre-ho al cas multi-fase. Una de les característiques més importants dels esquemes de discretització, a part de la precisió, és la seva capacitat per conservar discretament l'energia cinètica, específicament en el cas de fluxos turbulents. Per tant, aquest capítol analitza la precisió i propietats de conservació de dos esquemes de malla diferents: ¿collocated¿ i ¿staggered¿.L'extensió dels esquemes de malla aptes per els casos de una sola fase als casos multi-fase es desenvolupa en el cinquè capítol. En particular, així com en el cas de la simulació de la turbulència les tècniques numèriques han evolucionat per a preservar discretament massa, moment i energia cinètica, els esquemes de malla per a la discretització de fluxos multi-fase han evolucionat per millorar la seva estabilitat i robustesa. Per lo tant, aquest capítol presenta i analitza dos discretitzacions de malla ¿collocated¿ i ¿staggered¿ particulars, aptes per simular fluxos multi-fase, que afavoreixen la conservació discreta de massa, moment i energia cinètica.Finalment, el capítol sis simula numèricament la inestabilitat de Richtmyer-Meshkov (RM) de dos fluids immiscibles i incompressibles. Aquest capítol es una prova general dels mètodes numèrics desenvolupats al llarg de la tesi. En particular, la inestabilitat ha sigut simulada mitjançant un mètode VOF i un esquema de malla ¿staggered¿. Els resultats numèrics corresponents han demostrat la capacitat del sistema discret en obtenir bons resultats per la inestabilitat RM.

    The present thesis aims at developing a basis for the numerical simulation of multiphase flows of immiscible fluids. This approach, although limited by the computational power of the present computers, is potentially very important, since most of the physical phenomena of these flows often happen on space and time scales where experimental techniques are impossible to be utilized in practice. In particular, this research is focused on developing numerical discretizations suitable for three-dimensional (3-D) unstructured meshes. In detail, the first chapter delimits the considered multiphase flows to the case in which the components are immiscible fluids. In particular, the focus is placed on those cases where two or more continuous streams of different fluids are separated by interfaces, and hence, correspondingly named separated flows. Additionally, once the type of flow is determined, the chapter introduces the physical characteristics and the models available to predict its behavior, as well as the mathematical formulation that sustains the numerical techniques developed within this thesis. The second chapter introduces and analyzes a new geometrical Volume-of-Fluid (VOF) method for capturing interfaces on 3-D Cartesian and unstructured meshes. The method reconstructs interfaces as first- and second-order piecewise planar approximations (PLIC), and advects volumes in a single unsplit Lagrangian-Eulerian (LE) geometrical algorithm based on constructing flux polyhedrons by tracing back the Lagrangian trajectories of the cell-vertex velocities. In this way, the situations of overlapping between flux polyhedrons are minimized. Complementing the previous chapter, the third one proposes a parallelization strategy for the VOF method. The main obstacle is that the computing costs are concentrated in the interface between fluids. Consequently, if the interface is not homogeneously distributed, standard domain decomposition (DD) strategies lead to imbalanced workload distributions. Hence, the new strategy is based on a load balancing process complementary to the underlying domain decomposition. Its parallel efficiency has been analyzed using up to 1024 CPU-cores, and the results obtained show a gain with respect to the standard DD strategy up to 12x, depending on the size of the interface and the initial distribution. The fourth chapter describes the discretization of the single-phase Navier-Stokes equations to later extend it to the case of multiphase immiscible flow. One of the most important characteristics of the discretization schemes, aside from accuracy, is their capacity to discretely conserve kinetic energy, specially when solving turbulent flow. Hence, this chapter analyzes the accuracy and conservation properties of two particular collocated and staggered mesh schemes. The extension of the numerical schemes suitable for the single-phase Navier-Stokes equations to the case of multiphase immiscible flow is developed in the fifth chapter. Particularly, while the numerical techniques for the simulation of turbulent flow have evolved to discretely preserve mass, momentum and, specially, kinetic energy, the mesh schemes for the discretization of multiphase immiscible flow have evolved to improve their stability and robustness. Therefore, this chapter presents and analyzes two particular collocated and staggered mesh discretizations, able to simulate multiphase immiscible flow, which favor the discrete conservation of mass, momentum and kinetic energy. Finally, the sixth chapter numerically simulates the Richtmyer-Meshkov (RM) instability of two incompressible immiscible liquids. This chapter is a general assessment of the numerical methods developed along this thesis. In particular, the instability has been simulated by means of a VOF method and a staggered mesh scheme. The corresponding numerical results have shown the capacity of the discrete system to obtain accurate results for the RM instability.

    Aquesta tesi té com a objectiu desenvolupar una base per a la simulació numèrica de fluids multi-fase immiscibles. Aquesta estratègia, encara que limitada per la potència computacional dels computadors actuals, és potencialment molt important, ja que la majoria de la fenomenologia d'aquests fluids sovint passa en escales temporals i especials on les tècniques experimentals no poden ser utilitzades. En particular, aquest treball es centra en desenvolupar discretitzacions numèriques aptes per a malles no-estructurades en tres dimensions (3-D). En detall, el primer capítol delimita els casos multifásics considerats al cas en que els components són fluids immiscibles. En particular, la tesi es centra en aquells casos en que dos o més fluids diferents són separats per interfases, i per tant, corresponentment anomenats fluxos separats. A més a més, un cop el tipus de flux es determinat, el capítol introdueix les característiques físiques i els models disponibles per predir el seu comportament, així com també la formulació matemàtica i les tècniques numèriques desenvolupades en aquesta tesi. El segon capítol introdueix i analitza un nou mètode "Volume-of-Fluid" (VOF) apte per a capturar interfases en malles Cartesianes i no-estructurades 3-D. El mètode reconstrueix les interfases com aproximacions "piecewise planar approximations" (PLIC) de primer i segon ordre, i advecciona els volums amb un algoritme geomètric "unsplit Lagrangian-Eulerian" (LE) basat en construïr els poliedres a partir de les velocitats dels vèrtexs de les celdes. D'aquesta manera, les situacions de sobre-solapament entre poliedres són minimitzades. Complementant el capítol anterior, el tercer proposa una estratègia de paral·lelització pel mètode VOF. L'obstacle principal és que els costos computacionals estan concentrats en les celdes de l'interfase entre fluids. En conseqüència, si la interfase no està ben distribuïda, les estratègies de "domain decomposition" (DD) resulten en distribucions de càrrega desequilibrades. Per tant, la nova estratègia està basada en un procés de balanceig de càrrega complementària a la DD. La seva eficiència en paral·lel ha sigut analitzada utilitzant fins a 1024 CPU-cores, i els resultats obtinguts mostren uns guanys respecte l'estratègia DD de fins a 12x, depenent del tamany de la interfase i de la distribució inicial. El quart capítol descriu la discretització de les equacions de Navier-Stokes per a una sola fase, per després estendre-ho al cas multi-fase. Una de les característiques més importants dels esquemes de discretització, a part de la precisió, és la seva capacitat per conservar discretament l'energia cinètica, específicament en el cas de fluxos turbulents. Per tant, aquest capítol analitza la precisió i propietats de conservació de dos esquemes de malla diferents: "collocated" i "staggered". L'extensió dels esquemes de malla aptes per els casos de una sola fase als casos multi-fase es desenvolupa en el cinquè capítol. En particular, així com en el cas de la simulació de la turbulència les tècniques numèriques han evolucionat per a preservar discretament massa, moment i energia cinètica, els esquemes de malla per a la discretització de fluxos multi-fase han evolucionat per millorar la seva estabilitat i robustesa. Per lo tant, aquest capítol presenta i analitza dos discretitzacions de malla "collocated" i "staggered" particulars, aptes per simular fluxos multi-fase, que afavoreixen la conservació discreta de massa, moment i energia cinètica. Finalment, el capítol sis simula numèricament la inestabilitat de Richtmyer-Meshkov (RM) de dos fluids immiscibles i incompressibles. Aquest capítol es una prova general dels mètodes numèrics desenvolupats al llarg de la tesi. En particular, la inestabilitat ha sigut simulada mitjançant un mètode VOF i un esquema de malla "staggered". Els resultats numèrics corresponents han demostrat la capacitat del sistema discret en obtenir bons resultats per la inestabilitat RM.

  • On the eddy-diffusivity closure for turbulent natural convection

     Lehmkuhl Barba, Oriol; Rodriguez Pérez, Ivette Maria; Galione Klot, Pedro Andres; Borrell Pol, Ricard; Oliva Llena, Asensio
    European Conference on Computational Fluid Dynamics
    Presentation's date: 2014-07-23
    Presentation of work at congresses

    View View Open in new window  Share Reference managers Reference managers Open in new window

  • Numerical investigation on particle resuspension in turbulent duct flow via DNS-DEM: effect of collisions

     Zhang, Hao; Trias Miquel, Francesc Xavier; Gorobets, Andrei; Yang, Dongmin; Oliva Llena, Asensio; Tan, Yuanqiang
    European Conference on Computational Mechanics
    p. 2718-2725
    Presentation's date: 2014-07-22
    Presentation of work at congresses

    Read the abstract Read the abstract View View Open in new window  Share Reference managers Reference managers Open in new window

    Particle transportation in a fully developed turbulent duct flow is numerically investigated under the effect of wall-normal gravity force. The hydrodynamic modeling of the fluid phase is based on direct numerical simulation. The kinematics and trajectory of the particles as well as the particle-particle interaction are described by the discrete element method (DEM). By using a soft-sphere DEM where the particles and the walls are specified by material properties in the simulation, the effect of collisions on the particle resuspension rate is discussed. The collisions are found to influence on the particle resuspension rate near the duct floor whereas hardly affect the particle behavior near the duct center.

  • Aerodynamic fluctuating forces on a rotating cylinder

     Aljure Osorio, David E.; Rodriguez Pérez, Ivette Maria; Lehmkuhl Barba, Oriol; Perez Segarra, Carlos David; Oliva Llena, Asensio
    World Congress on Computational Mechanics
    Presentation's date: 2014-07-21
    Presentation of work at congresses

    View View Open in new window  Share Reference managers Reference managers Open in new window

  • Spectrally-consistent regularization of turbulent Rayleigh-Bénard convection

     Dabbagh, Firas; Trias Miquel, Francesc Xavier; Gorobets, Andrei; Oliva Llena, Asensio
    European Conference on Computational Fluid Dynamics
    p. 7144-7155
    Presentation's date: 2014-07-21
    Presentation of work at congresses

    Read the abstract Read the abstract View View Open in new window  Share Reference managers Reference managers Open in new window

    Direct numerical simulation (DNS) of turbulent Rayleigh-Bénard convection in an air filled (Pr = 0,7) rectangular cell of squared cross-section with periodic boundary conditions in the span-wise direction, has been carried out at Ra = 10^8. A fourth-order energy-conserving discretizations have been used that ensure non-physical dissipative effects introduced usually in other numerical schemes. The two sensitive fine-scales kinetic and thermal dissipation rates have been studied statistically to reveal high correlation within the thermal boundary layers and equilibrium zones of the two dissipations at strong thermal and kinetic interactions. It has been found that the foregoing zones could mark the plumes since these last reflect significant correlation regions of the kinetic and thermal fields. Afterwards, a novel class of symmetry-preserving regularization models that restrain the convective production of small scales of motion in unconditionally stable manner, have been applied on the studied problem. The obtained results are compared directly with the DNS ones to show a reasonable correspondence with and without model at this kind of moderate turbulence.

  • Access to the full text
    Improvements on the numerical analysis of viscoplastic-type non-Newtonian fluid flows  Open access

     Carmona Muñoz, Angel; Lehmkuhl Barba, Oriol; Perez Segarra, Carlos David; Oliva Llena, Asensio
    European Conference on Computational Fluid Dynamics
    Presentation's date: 2014-07-20
    Presentation of work at congresses

    Read the abstract Read the abstract Access to the full text Access to the full text Open in new window  Share Reference managers Reference managers Open in new window

    The aim of this work is to delve into the numerical analysis of viscoplastic-type non-Newtonian fluid flows with the objective of carrying out more advanced numerical simulations for them. Specifically, improvements in the spatial discretization schemes and the temporal integration methods are proposed to overcome the numerical problems introduced by the transpose diffusive term and associated with the velocity field discontinuity, the artificial viscous diffusion and the transpose viscous coupling.

  • Multi-physics coupled simulations: interaction of turbulence with radiation. Application to direct numerical simulation of turbulent Rayleigh-Bénard convection in a radiatively participating medium.

     Rodriguez Pérez, Ivette Maria; Oliva Llena, Asensio; Lehmkuhl Barba, Oriol; Borrell Pol, Ricard; Colomer Rey, Guillem; Oyarzun Altamirano, Guillermo
    Competitive project

     Share

  • Three dimensional heat transfer analysis of combined conduction and radiation in honeycomb transparent insulation

     Kessentini, Hamdi; Capdevila Paramio, Roser; Castro Gonzalez, Jesus; Oliva Llena, Asensio; Bouden, Chiheb
    Solar energy
    Vol. 105, p. 58-70
    DOI: 10.1016/j.solener.2014.02.027
    Date of publication: 2014-07-01
    Journal article

    Read the abstract Read the abstract View View Open in new window  Share Reference managers Reference managers Open in new window

    In this work a three dimensional heat transfer analysis of honeycomb Transparent Insulation Materials (TIM) destined for improving the efficiency of flat plate solar collectors is performed. The cellular and repetitive nature of the TIM structure has allowed simplify the problem and simulate a single isolated cell with opaque and adiabatic walls. The combined heat transfer by radiation and conduction across the isolated cell is treated by means of the solution of the energy equation in its three dimensional form which is coupled to the Radiative Transfer Equation (RTE). The Finite Volume Method is used for the resolution of the RTE. The numerical results are compared to experimental measurements of the heat transfer coefficient on various honeycomb TIM given by different authors in the literature showing a reasonable agreement. The 3D simulations have allowed to study in detail the thermal behavior of the TIM and to understand the real physics of the problem. Finally, a parametric study is conducted in order to investigate the effect of the variation of the most relevant optical and dimensional parameters of the TIM on the heat transfer.

  • Unstructured 3D numerical modeling of the melting of a PCM contained in a spherical capsule

     Galione Klot, Pedro Andres; Lehmkuhl Barba, Oriol; Rigola Serrano, Joaquim; Perez Segarra, Carlos David; Oliva Llena, Asensio
    European Conference on Computational Fluid Dynamics
    p. 5427-5438
    Presentation's date: 2014-07
    Presentation of work at congresses

    View View Open in new window  Share Reference managers Reference managers Open in new window

  • On the IBM approximation for the wheel aerodynamic simulation

     Aljure Osorio, David E.; Lehmkuhl Barba, Oriol; Martinez Valdivieso, Daniel; Favre Samarra, Federico; Oliva Llena, Asensio
    International Conference in Numerical and Experimental Aerodynamics of Road Vehicles and Trains
    p. 1-2014-05-1-1-2014-05-2
    Presentation's date: 2014-06-23
    Presentation of work at congresses

    Read the abstract Read the abstract View View Open in new window  Share Reference managers Reference managers Open in new window

    Challenging large eddy simulations (CLES) are performed to the flow around simplified wheels in wheelhouses. Wheel geometry is modelled using immersed boundary methods. Results are compared to previous numerical simulations. Instantaneous flows results and turbulent structures are analysed to asses the viability of this boundary treatment on the resolution of a rotating wheel.

  • Access to the full text
    Flow and turbulent structures around simplified car models  Open access

     Aljure Osorio, David E.; Lehmkuhl Barba, Oriol; Rodriguez Pérez, Ivette Maria; Oliva Llena, Asensio
    Computers and fluids
    Vol. 96, p. 122-135
    DOI: 10.1016/j.compfluid.2014.03.013
    Date of publication: 2014-06-13
    Journal article

    Read the abstract Read the abstract Access to the full text Access to the full text Open in new window  Share Reference managers Reference managers Open in new window

    External car aerodynamics study has great importance in overall car efficiency and ride stability, being a key element in successful automotive design. The flow over car geometries shows three dimensional and unsteady turbulent characteristics. Additionally, vortex shedding, flow reattachment and recirculation bubbles are also found around the bluff body. These phenomena greatly influence the lift and drag coefficients, which are fundamental for ride stability and energy efficiency, respectively. The aim of the present study is focused on the assessment of different LES models (e.g. VMS or SIGMA models), as well as to show their capabilities of capturing the large scale turbulent flow structures in car-like bodies using relative coarse grids. In order to achieve these objectives, the flow around two model car geometries, the Ahmed and the Asmo cars, is simulated. These generic bluff bodies reproduce the basic fluid dynamics features of real cars. First, the flow over both geometries is studied and compared against experimental results to validate the numerical results. Then, different LES models are used to study the flow in detail and compare the structures found in both geometries.

  • Numerical modeling and experimental validation of encapsulated PCM thermal energy storage tanks for concentrated solar power plants

     Galione Klot, Pedro Andres; Perez Segarra, Carlos David; Rodriguez Pérez, Ivette Maria; Lehmkuhl Barba, Oriol; Rigola Serrano, Joaquim; Oliva Llena, Asensio
    Eurotherm Seminar
    Presentation's date: 2014-05-29
    Presentation of work at congresses

    Read the abstract Read the abstract  Share Reference managers Reference managers Open in new window

    A numerical simulation model of thermal energy storage systems with encapsulated PCM is presented. In previous papers (Galione et al., 2011), the performance of cylindrical containers filled with PCM spheres and liquid fluids occupying the rest of the space was studied. Different charging and discharging processes were not only numerically analyzed, but also experimentally tested. Based on these numerical simulation tools for predicting the thermal and fluid dynamic behavior of these systems, new PCM tanks built in different solid filled materials and encapsulated PCMs combined into multi-layer storage with molted salt as heat transfer fluid are here presented. A virtual prototype proposed is numerically analyzed, while performance behavior is presented under different devices (charging and discharging conditions, PCMs temperatures, and multilayer configurations). The efficiency of these new configurations is also compared against conventional thermocline, showing the better option depending on cases and/or plants proposed.

  • Fighting against massively parallel accelerators of various architectures for the efficiency of finite-volume parallel CFD codes

     Gorobets, Andrei; Trias Miquel, Francesc Xavier; Oliva Llena, Asensio
    International Conference on Parallel Computational Fluid Dynamics
    Presentation's date: 2014-05-21
    Presentation of work at congresses

     Share Reference managers Reference managers Open in new window

  • An efficient parallelization method for the evaluation of chemical reaction rates

     Muela Castro, Jordi; Borrell Pol, Ricard; Ventosa, Jordi; Jofre Cruanyes, Lluís; Lehmkuhl Barba, Oriol; Oliva Llena, Asensio
    International Conference on Parallel Computational Fluid Dynamics
    Presentation's date: 2014-05-21
    Presentation of work at congresses

    Read the abstract Read the abstract  Share Reference managers Reference managers Open in new window

    An efficient parallelization method for the evaluation of the reaction rates of the species present in a chemical reaction has been implemented and assessed in an unstructured parallel CFD code [1]. Combustion simulations where the finite-rate chemistry model is employed have a heavy computational load in the cells where the flame is located, inducing a noteworthy imbalance in parallel simulations. With the aim to solve this problem, a smart balancing method which redistributes the computational load between all the processors has been developed.

  • Lessons learned on PRACE project DRAGON - Understanding the DRAG crisis: On the flow past a circular cylinder from critical to trans-critical Reynolds numbers

     Lehmkuhl Barba, Oriol; Rodriguez Pérez, Ivette Maria; Chiva Segura, Jorge; Borrell Pol, Ricard; Oliva Llena, Asensio
    International Conference on Parallel Computational Fluid Dynamics
    Presentation's date: 2014-05-20
    Presentation of work at congresses

     Share Reference managers Reference managers Open in new window

  • Parallelization strategy for adaptive mesh refinement and its application in turbulent flows

     Antepara Zambrano, Oscar; Borrell Pol, Ricard; Lehmkuhl Barba, Oriol; Oliva Llena, Asensio
    International Conference on Parallel Computational Fluid Dynamics
    Presentation's date: 2014-05-20
    Presentation of work at congresses

    Read the abstract Read the abstract  Share Reference managers Reference managers Open in new window

    Adaptive mesh refinement (AMR) methods focus on the refinement/coarsening of certain zones of the mesh according to the dynamic characteristics of the flow, in order to get a suitable grid resolution at any part of the domain and time step of a numerical simulation. The benefit from this method is an automatic and dynamic mesh adaptation to accurately solve flow problems, otherwise the construction of a fixed (static) mesh needs a maximum grid resolution to be established, from the beginning of the simulation, in zones that will not be required in other time step of the simulation. Apart from reducing the computing requirements for the simulation, it is also important that the algorithm achieves a good parallel performance in current supercomputers, to take advantage of the increasingly available computing power. In order to accomplish these objectives, the development of a parallel adaptive mesh refinement code for three-dimensional structured meshes on distributed-memory machines is presented. Our AMR scheme applies a cell-based refinement technique, where an octree data structure is used keeping track of the cells connectivity through the different levels of refinement and a physics-based refinement criteria is developed based on the variational multi-scale (VMS) decomposition theory. This approach has been validated in turbulent problems around bluff bodies in 2D and 3D domains. The proposed work focuses on the parallelization strategy and includes a performance study of the algorithm. The overall AMR process, from the selection of the cells to be refined/coarsened to the partitioning and pre-processing of the resulting mesh has been implemented in parallel and tested on a AMD Opteron based supercomputer. Finally, the applicability, robustness and accuracy of our algorithm is shown on the numerical simulation of the turbulent flow around a wall mounted cube at Re=7235. which reproduces some of the turbulent flows features around bluff bodies, i.e. flow separation, vortex shedding and appearance of vortex at the upstream face and in the wake of the cube.

  • Hybrid MPI-CUDA implementation of unstructured Navier-stokes solver focusing on CG preconditioners

     Oyarzun Altamirano, Guillermo; Borrell Pol, Ricard; Gorobets, Andrei; Lehmkuhl Barba, Oriol; Oliva Llena, Asensio
    International Conference on Parallel Computational Fluid Dynamics
    Presentation's date: 2014-05-20
    Presentation of work at congresses

    Read the abstract Read the abstract  Share Reference managers Reference managers Open in new window

    This work attempts to provide some guidelines in the selection of the preconditioner for CFD simulations when using iterative solvers on GPUs. Consequently, three different preconditioners are analyzed: Diagonal (DIAG), Linelet (LIN) and Sparse Approximate Inverse preconditioner (SAI). The bechmark case known as the Ahmed car was chosen to perform numerical results.

  • MPI-CUDA sparse matrix-vector multiplication for the conjugate gradient method with an approximate inverse preconditioner

     Oyarzun Altamirano, Guillermo; Gorobets, Andrei; Oliva Llena, Asensio; Borrell Pol, Ricard
    Computers and fluids
    Vol. 92, p. 244-252
    DOI: 10.1016/j.compfluid.2013.10.035
    Date of publication: 2014-03-20
    Journal article

    Read the abstract Read the abstract View View Open in new window  Share Reference managers Reference managers Open in new window

    The preconditioned conjugate gradient (PCG) is one of the most prominent iterative methods for the solution of sparse linear systems with symmetric and positive definite matrix that arise, for example, in the modeling of incompressible flows. The method relies on a set of basic linear algebra operations which determine the overall performance. Therefore, to achieve improvements in the performance, implementations of these basic operations must be adapted to the changes in the architecture of parallel computing systems. In the last years, one of the strategies to increase the computing power of supercomputers has been the usage of Graphics Processing Units (GPUs) as math co-processors in addition to CPUs. This paper presents a MPI-CUDA implementation of the PCG solver for such hybrid computing systems composed of multiple CPUs and CPUs. Special attention has been paid to the sparse matrix-vector multiplication (SpMV), because most of the execution time of the solver is spent on this operation. The approximate inverse preconditioner, which is used to improve the convergence of the CG solver, is also based on the SpMV operation. An overlapping of data transfer and computations is proposed in order to hide the MPI and the CPU-GPU communications needed to perform parallel SpMVs. This strategy has shown a considerable improvement and, as a result, the hybrid implementation of the PCG solver has demonstrated a significant speedup compared to the CPU-only implementation.

  • Numerical and experimental study of a flat plate collector with honeycomb transparent insulation and overheating protection system  Open access

     Kessentini, Hamdi
    Universitat Politècnica de Catalunya
    Theses

    Read the abstract Read the abstract Access to the full text Access to the full text Open in new window  Share Reference managers Reference managers Open in new window

    En esta tesis se presenta un captador solar plano (FPC) con aislamiento transparente plástico (TIM ) y un sistema de protección al sobrecalentamiento de bajo coste. Este captador está destinado a suministrar calor en el rango de temperatura de 80 hasta 120°C. Un canal de ventilación es introducido por debajo del absorbedor con una compuerta térmicamente accionada mediante un sistema de resorte de tipo aleación con memoria. Este canal permite proteger el colector en condiciones de estancamiento, preservando al mismo tiempo un buen rendimiento durante el funcionamiento normal. Para este objetivo, un prototipo ha sido construido y probado experimentalmente. En paralelo, diferentes modelos numéricos se han implementado con el objetivo de predecir el comportamiento térmico de este captador. La presente tesis consta de seis capítulos detallados a continuación. En el primer capítulo, se ha realizado una revisión de la literatura con el fin de presentar el estado del arte más actual en el campo de calor solar a temperaturas medias. Esta revisión ha permitido apreciar los últimos hallazgos y desafíos clave relacionados con el tema estudiado y presentar la contribución de este trabajo al conjunto de conocimientos existentes. El segundo capítulo está dedicado a la descripción del dispositivo experimental: descripción técnica del captador, de los diferentes sensores utilizados y los procedimientos de prueba adoptadas. En el tercer capítulo, se ha implementado un modelo numérico de cálculo rápido. Este modelo está basado en la resolución de los diferentes componentes del captador por medio de una plataforma modular orientada a objetos. Pruebas experimentales de interior y exterior se han llevado a cabo y han demostrado la eficacia del sistema de sobrecalentamiento en condiciones de estancamiento. La comparación de los resultados numéricos con experimentos ha demostrado que el código puede reproducir con precisión el funcionamiento térmico del captador. Varias simulaciones paramétricas se han realizado con el fin de optimizar el diseño del captador: se han evalúado 3125 diferentes configuraciones por medio de prototipos virtuales. Los resultados han permitido proponer el diseño más prometedor del FPC con TIM de plástico capaz de trabajar a temperatura de funcionamiento de 100 °C con eficiencia prometedora. En el cuarto capítulo, los elementos más críticos del colector (canal de ventilación y cámara de aire&TIM) han sido sustituidos por objetos CFD en el código modular implementado. En las simulaciones CFD, se ha utilizado Large Eddy Simulation (LES) modelo. Las soluciones numéricas se han validado primero con casos de referencia y a continuación se han verificado los resultados del modelo general del captador por comparación con las pruebas experimentales que han mostrado buena concordancia. Este análisis preliminar ha permitido entender la transferencia de calor y dinámica de fluido a diferentes temperaturas de funcionamiento del colector estudiado.En el quinto capítulo, se ha llevado a cabo un análisis de la transferencia de calor por radiación y conducción en el aislamiento transparente de estructura alveolar. Este analisis ha sido llevada a cobo mediante de la resolución de la ecuación de energía en su forma tridimensional de forma acoplado a la ecuación de transferencia por radiación (RTE). Se ha utilizado el método de volúmenes finitos para la resolución de la RTE. Los resultados numéricos han sido comparados con resultados experimentales de varios TIM dados por diferentes autores en la literatura mostrando acuerdos aceptables. Un estudio paramétrico se ha llevado a cabo para investigar el efecto de la variación de los parámetros ópticos y dimensionales más relevantes del TIM en la transferencia de calor. Finalmente, el último capítulo resume la contribución de esta tesis y presenta las posibles direcciones de investigación futura.

    In this thesis a flat plate collector (FPC) with plastic transparent insulation materials (TIM) and a low-cost overheating protection system destined for heat supply from 80 to 120°C is presented. A ventilation channel with a thermally actuated door is inserted below the absorber allowing to protect the collector from stagnation conditions, while preserving good performance during normal operation. For this objective, a prototype has been constructed and experimentally tested and in parallel, numerical and CFD models have been implemented with the aim of predicting the thermal behavior of this collector. The present thesis consists of six chapters and a brief summary of each one is given below: In the first chapter, a literature survey is carried out in order to present the most updated R&D status in the field of solar heat at medium temperatures. This literature research has allowed to appreciate the latest findings and key challenges related to the studied topic and to present the contribution of this work to the pool of existing knowledge. The second chapter is devoted to the description of the experimental set up. The problem of overheating for FPC with TIM is first pointed out and the technical description of the studied FPC is then presented. The different sensors used and the test procedures adopted during the experiments are presented. In the third chapter, a fast calculation numerical model is implemented. This model is based on the resolution of the different components of the collector by means of a modular object-oriented platform. Indoor and outdoor tests are performed and have shown the effectiveness of the overheating system being able to maintain low enough temperatures at the collector preventing thus the plastic TIM from stagnation conditions. The comparison of the numerical results with experiments has demonstrated that the code can accurately reproduce the performance of the collector. Several parametric simulations are then performed in order to optimize the collector design: 3125 different configurations are evaluated by means of virtual prototyping and the results have allowed to propose the most promising design of a stagnation proof FPC with plastic TIM able to work at operating temperature 100°C with promising efficiency. In the forth chapter, the most critical elements of the collector (ventilation channel and air gap&TIM) have been substituted by high-level CFD objects in the implemented modular object-oriented code. For the detailed numerical simulations, Large Eddy Simulations (LES) modeling is used. In order to speed-up the simulations, parallelisation techniques are used. The numerical solutions are firstly validated with benchmark cases. Then, the general model of the collector is validated by comparison of the numerical results with the indoor experimental tests showing a reasonable agreement. The preliminary CFD simulation results have allowed to understand the heat transfer and fluid flow at different operating temperatures of the studied collector. In the fifth chapter, a heat transfer analysis of the honeycomb TIM is carried out. The combined radiation and conduction heat transfer across the isolated cell is treated by means of the solution of the energy equation in its three dimensional form which is coupled to the Radiative Transfer Equation (RTE). The Finite Volume Method is used for the resolution of the RTE. The numerical results are compared to experimental measurements of the heat transfer coefficient on various honeycomb TIM given by different authors in the literature showing acceptable agreements. Finally, a parametric study is conducted in order to investigate the effect of the variation of the most relevant optical and dimensional parameters of the TIM on the heat transfer. Finally, the last chapter summarizes the contribution of this thesis and discuss the possible directions of future research.

  • Symmetry-preserving discretization of Navier-Stokes equations on collocated unstructured meshes

     Trias Miquel, Francesc Xavier; Lehmkuhl Barba, Oriol; Oliva Llena, Asensio; Perez Segarra, Carlos David; Verstappen, R.W.C.P.
    Journal of computational physics
    Vol. 258, p. 246-267
    DOI: 10.1016/j.jcp.2013.10.031
    Date of publication: 2014-02-01
    Journal article

    Read the abstract Read the abstract View View Open in new window  Share Reference managers Reference managers Open in new window

    A fully-conservative discretization is presented in this paper. The same principles followed by Verstappen and Veldman (2003) are generalized for unstructured meshes. Here, a collocated-mesh scheme is preferred over a staggered one due to its simpler form for such meshes. The basic idea behind this approach remains the same: mimicking the crucial symmetry properties of the underlying differential operators, i.e., the convective operator is approximated by a skew-symmetric matrix and the diffusive operator by a symmetric, positive-definite matrix. A novel approach to eliminate the checkerboard spurious modes without introducing any non-physical dissipation is proposed. To do so, a fully-conservative regularization of the convective term is used. The supraconvergence of the method is numerically showed and the treatment of boundary conditions is discussed. Finally, the new discretization method is successfully tested for a buoyancy-driven turbulent flow in a differentially heated cavity.

    A fully-conservative discretization is presented in this paper. The same principles followed by Verstappen and Veldman (2003) [3] are generalized for unstructured meshes. Here, a collocated-mesh scheme is preferred over a staggered one due to its simpler form for such meshes. The basic idea behind this approach remains the same: mimicking the crucial symmetry properties of the underlying differential operators, i.e., the convective operator is approximated by a skew-symmetric matrix and the diffusive operator by a symmetric, positive-definite matrix. A novel approach to eliminate the checkerboard spurious modes without introducing any non-physical dissipation is proposed. To do so, a fully-conservative regularization of the convective term is used. The supraconvergence of the method is numerically showed and the treatment of boundary conditions is discussed. Finally, the new discretization method is successfully tested for a buoyancy-driven turbulent flow in a differentially heated cavity.

  • Pla d'Actuació CTTC

     Oliva Llena, Asensio
    Competitive project

     Share

  • Centre Tecnològic de Transferència de Calor

     Rigola Serrano, Joaquim; Castro Gonzalez, Jesus; Oliet Casasayas, Carles; Rodriguez Pérez, Ivette Maria; Trias Miquel, Francesc Xavier; Colomer Rey, Guillem; Capdevila Paramio, Roser; Ablanque Mejia, Nicolas; Lehmkuhl Barba, Oriol; Carmona Muñoz, Angel; Sadurni Caballol, Alexandre; Kizildag, Deniz; Giraldez Garcia, Hector; Baez Vidal, Aleix; Lopez Mas, Joan; Farnos Baulenas, Joan; Torras Ortiz, Santiago; Chiva Segura, Jorge; Balcázar Arciniega, Néstor Vinicio; Martinez Valdivieso, Daniel; Jofre Cruanyes, Lluís; Calafell Sandiumenge, Joan; Estruch Perez, Olga; Muela Castro, Jordi; Ventosa Molina, Jordi; Aizpurua Udabe, Imanol; Schillaci, Eugenio; Favre Samarra, Federico; Zhang, Hao; Aljure Osorio, David E.; Morales Ruiz, Sergio; Borrell Pol, Ricard; Galione Klot, Pedro Andres; Dabbagh, Firas; Oyarzun Altamirano, Guillermo; Gorobets, Andrei; Oliva Llena, Asensio
    Competitive project

     Share

  • Access to the full text
    Limits of the Oberbeck–Boussinesq approximation in a tall differentially heated cavity filled with water  Open access

     Kizildag, Deniz; Rodriguez Pérez, Ivette Maria; Oliva Llena, Asensio; Lehmkuhl Barba, Oriol
    International journal of heat and mass transfer
    Vol. 68, p. 489-499
    DOI: 10.1016/j.ijheatmasstransfer.2013.09.046
    Date of publication: 2014-01-01
    Journal article

    Read the abstract Read the abstract Access to the full text Access to the full text Open in new window  Share Reference managers Reference managers Open in new window

    The present work assesses the limits of the Oberbeck–Boussinesq (OB) approximation for the resolution of turbulent fluid flow and heat transfer inside a tall differentially heated cavity of aspect ratio G = 6.67 filled with water (Pr = 3.27, Ra = 2.12e11). The cavity models the integrated solar collector-storage element installed on an advanced façade. The implications of the Oberbeck–Boussinesq approximation is submitted to investigation by means of direct numerical simulations (DNS) carried out for a wide range of temperature differences. Non-Oberbeck–Boussinesq (NOB) effects are found to be relevant, especially beyond the temperature difference of 30 °C, in the estimation of heat transfer, stratification, and flow configuration.

  • Parallel sweep-based preconditioner for the solution of the linear Boltzmann transport equation

     Borrell Pol, Ricard; Colomer Rey, Guillem; Lehmkuhl Barba, Oriol; Rodriguez Pérez, Ivette Maria; Oliva Llena, Asensio
    Computers and fluids
    Vol. 88, p. 884-890
    DOI: 10.1016/j.compfluid.2013.09.027
    Date of publication: 2013-12-15
    Journal article

    Read the abstract Read the abstract View View Open in new window  Share Reference managers Reference managers Open in new window

    The Boltzmann transport equation is solved in the context of radiative heat transfer, for an isotropically scattering medium with reflecting boundaries. Under these circumstances, the different ordinates of the angular flux are mutually coupled. We explore here the use of a parallel sweep-based block diagonal preconditioner as a complement of the GMRES solver on the solution of the discretization matrix (which includes all the inter-ordinate couplings). The validity of this approach, when compared to the standard source iteration scheme, is successfully assessed for a significant range of the coupling parameters.

  • A parallel MPI+OpenMP+OpenCL algorithm for hybrid supercomputations of incompressible flows

     Gorobets, Andrei; Trias Miquel, Francesc Xavier; Oliva Llena, Asensio
    Computers and fluids
    Vol. 88, p. 764-772
    DOI: 10.1016/j.compfluid.2013.05.021
    Date of publication: 2013-12
    Journal article

    Read the abstract Read the abstract View View Open in new window  Share Reference managers Reference managers Open in new window

    The work is devoted to the development of efficient parallel algorithms for large-scale simulations of incompressible flows on hybrid supercomputers based on massively-parallel accelerators. The governing equations are discretized using a high-order finite-volume scheme for Cartesian staggered meshes with the only restriction that, at least, one direction is periodic. Its “classical” MPI + OpenMP parallel implementation for CPUs was designed to scale till 100,000 CPU cores. The new hybrid algorithm is developed on a base of a multi-level parallel model that exploits several layers of parallelism of a modern hybrid supercomputer. In this model, MPI and OpenMP are used on the first two levels to couple nodes of a supercomputer and to engage its CPU cores. Then, computing accelerators are further used by means of the hardware independent OpenCL computing standard. In this way, the implementation is adapted to a general computing model with central processors and math co-processors. In this paper the work is focused on adapting the basic operations of the algorithm to architectures of Graphics Processing Units (GPU) without considering the multi-GPU communication scheme. Technology of porting the code to OpenCL is described, certain optimization approaches are presented and relevant performance results obtaining up to 80–90 GFLOPS on a GPU accelerator are demonstrated. Moreover, the experience with different GPU architectures is summarized and a comparison based on the particular application is given for AMD and NVIDIA GPUs as well as for CUDA and OpenCL frameworks.

  • A simple approach to discretize the viscous term with spatially varying (eddy-)viscosity

     Trias Miquel, Francesc Xavier; Gorobets, Andrei; Oliva Llena, Asensio
    Journal of computational physics
    Vol. 253, p. 405-417
    DOI: 10.1016/j.jcp.2013.07.021
    Date of publication: 2013-11-15
    Journal article

    Read the abstract Read the abstract View View Open in new window  Share Reference managers Reference managers Open in new window

    A simple approach to discretize the viscous dissipation term in the incompressible Navier–Stokes equations with spatially varying viscosity is presented. Unlike the case where the viscosity remains constant, its discretization may be quite cumbersome especially for high-order staggered formulations. To circumvent this problem, we propose an alternative form of the viscous term whose discretization is straightforward. Notice that this approach is also suitable for eddy-viscosity models for Large-Eddy Simulation. Moreover, since it is based on already available operators, it can be easily implemented on any structured or unstructured code. The (supra)convergence of the method is numerically shown on both a fourth-order Cartesian staggered and an unstructured collocated formulation.

  • Conservation properties of unstructured finite-volume mesh schemes for the Navier-Stokes equations

     Jofre Cruanyes, Lluís; Lehmkuhl Barba, Oriol; Ventosa Molina, Jordi; Trias Miquel, Francesc Xavier; Oliva Llena, Asensio
    Numerical heat transfer. Part B, fundamentals
    Vol. 65, num. 1, p. 53-79
    DOI: 10.1080/10407790.2013.836335
    Date of publication: 2013-11-09
    Journal article

    Read the abstract Read the abstract View View Open in new window  Share Reference managers Reference managers Open in new window

    The Navier-Stokes equations describe fluid flow by conserving mass and momentum. There are two main mesh discretizations for the computation of these equations, the collocated and staggered schemes. Collocated schemes locate the velocity field at the same grid points as the pressure one, while staggered discretizations locate variables at different points within the mesh. One of the most important characteristic of the discretization schemes, aside from accuracy, is their capacity to discretely conserve kinetic energy, specially when solving turbulent flow. Hence, this work analyzes the accuracy and conservation properties of two particular collocated and staggered schemes by solving various problems.