Carregant...
Carregant...

Vés al contingut (premeu Retorn)

On Cayley's factorization of 4D rotations and applications

Autor
Pérez, A.; Thomas, F.
Tipus d'activitat
Article en revista
Revista
Advances in applied clifford algebras
Data de publicació
2017-03-01
Volum
27
Número
1
Pàgina inicial
523
Pàgina final
538
DOI
https://doi.org/10.1007/s00006-016-0683-9 Obrir en finestra nova
Projecte finançador
RobCab: Control strategies for cable-driven robot for low-gravity simulation
Repositori
http://hdl.handle.net/2117/113067 Obrir en finestra nova
URL
https://link.springer.com/article/10.1007%2Fs00006-016-0683-9 Obrir en finestra nova
Resum
A 4D rotation can be decomposed into a left- and a right-isoclinic rotation. This decomposition, known as Cayley’s factorization of 4D rotations, can be performed using the Elfrinkhof–Rosen method. In this paper, we present a more straightforward alternative approach using the corresponding orthogonal subspaces, for which orthogonal bases can be defined. This yields easy formulations, both in the space of 4×44×4 real orthogonal matrices representing 4D rotations and in the Clifford algebra...
Citació
Pérez, A., Thomas, F. On Cayley's factorization of 4D rotations and applications. "Advances in applied clifford algebras", 1 Març 2017, vol. 27, núm. 1, p. 523-538.
Paraules clau
4D Rotations, automation
Grup de recerca
KRD - Cinemàtica i Disseny de Robots

Participants