Carregant...
Carregant...

Vés al contingut (premeu Retorn)

Desingularizing b^m-symplectic structures

Autor
Miranda, E.; Guillemin, V.; Weitsman, J.
Tipus d'activitat
Article en revista
Revista
International mathematics research notices
Data de publicació
2017-06-28
DOI
https://doi.org/10.1093/imrn/rnx126 Obrir en finestra nova
Repositori
http://hdl.handle.net/2117/104863 Obrir en finestra nova
https://arxiv.org/abs/1512.05303 Obrir en finestra nova
URL
https://academic.oup.com/imrn/article-abstract/doi/10.1093/imrn/rnx126/3896875/Desingularizing-boldsymbol-b-m-Symplectic?redirectedFrom=fulltext Obrir en finestra nova
Resum
A 2n-dimensional Poisson manifold (M; ) is said to be bm-symplectic if it is symplectic on the complement of a hypersurface Z and has a simple Darboux canonical form at points of Z which we will describe below. In this paper we will discuss a desingularization procedure which, for m even, converts into a family of symplectic forms ! having the property that ! is equal to the bm-symplectic form dual to outside an -neighborhood of Z and, in addition, converges to this form as tends to ze...
Citació
Miranda, E., Guillemin, V., Weitsman, J. Desingularizing b^m-symplectic structures. "International mathematics research notices", 2017.
Grup de recerca
GEOMVAP - Geometria de Varietats i Aplicacions

Participants

Arxius