Carregant...
Carregant...

Vés al contingut (premeu Retorn)

Revisiting Kneser’s theorem for field extensions

Autor
Bachoc, C.; Serra, O.; Zemor, G.
Tipus d'activitat
Article en revista
Revista
Combinatorica
Data de publicació
2017-05-31
DOI
https://doi.org/10.1007/s00493-016-3529-0 Obrir en finestra nova
Projecte finançador
Estructuras discretas, geométricas y aleatorias
Repositori
http://hdl.handle.net/2117/114080 Obrir en finestra nova
https://arxiv.org/abs/1510.01354 Obrir en finestra nova
URL
https://link.springer.com/article/10.1007%2Fs00493-016-3529-0 Obrir en finestra nova
Resum
A Theorem of Hou, Leung and Xiang generalised Kneser’s addition Theorem to field extensions. This theorem was known to be valid only in separable extensions, and it was a conjecture of Hou that it should be valid for all extensions. We give an alternative proof of the theorem that also holds in the non-separable case, thus solving Hou’s conjecture. This result is a consequence of a strengthening of Hou et al.’s theorem that is inspired by an addition theorem of Balandraud and is obtained b...
Citació
Bachoc, C., Serra, O., Zemor, G. Revisiting Kneser’s theorem for field extensions. "Combinatorica", 31 Maig 2017.
Paraules clau
Additive combinatorics, linear versions
Grup de recerca
GAPCOMB - Geometric, Algebraic and Probabilistic Combinatorics

Participants