Carregant...
Carregant...

Vés al contingut (premeu Retorn)

Explicit inverse of a tridiagonal (p,r)-Toeplitz matrix

Autor
Encinas, A.; Jiménez, M.J.
Tipus d'activitat
Article en revista
Revista
Linear algebra and its applications
Data de publicació
2017-06-12
Volum
542
Pàgina inicial
402
Pàgina final
421
DOI
https://doi.org/10.1016/j.laa.2017.06.010 Obrir en finestra nova
Projecte finançador
La resistencia efectiva como herramienta para el estudio del problema inverso de las conductancias y el análisis de las perturbaciones de redes
Repositori
http://hdl.handle.net/2117/106362 Obrir en finestra nova
URL
http://www.sciencedirect.com/science/article/pii/S0024379517303737 Obrir en finestra nova
Resum
We have named tridiagonal (p,r)–Toeplitz matrix to those tridiagonal matrices in which each diagonal is a quasi–periodic sequence, d(p+j)=rd(j), so with period p¿N but multiplied by a real number r. We present here the necessary and sufficient conditions for the invertibility of this kind of matrices and explicitly compute their inverse. The techniques we use are related with the solution of boundary value problems associated to second order linear difference equations. These boundary value...
Citació
Encinas, A., Jiménez, M.J. Explicit inverse of a tridiagonal (p,r)-Toeplitz matrix. "Linear algebra and its applications", Vol. 542, 01 Abril, 2018, p. 402-421.
Paraules clau
boundary value problems, discrete Schrödinger operator, quasi–periodic sequences, second order linear difference equations, tridiagonal matrices
Grup de recerca
MAPTHE - Anàlisi matricial i Teoria Discreta del Potencial