Carregant...
Carregant...

Vés al contingut (premeu Retorn)

On sets defining few ordinary planes

Autor
Ball, S.
Tipus d'activitat
Article en revista
Revista
Discrete and computational geometry
Data de publicació
2017-09-19
Pàgina inicial
1
Pàgina final
34
DOI
https://doi.org/10.1007/s00454-017-9935-2 Obrir en finestra nova
Repositori
http://hdl.handle.net/2117/111528 Obrir en finestra nova
URL
https://link.springer.com/article/10.1007%2Fs00454-017-9935-2 Obrir en finestra nova
Resum
Let S be a set of n points in real three-dimensional space, no three collinear and not all co-planar. We prove that if the number of planes incident with exactly three points of S is less than (Formula presented.) for some (Formula presented.) then, for n sufficiently large, all but at most O(K) points of S are contained in the intersection of two quadrics. Furthermore, we prove that there is a constant c such that if the number of planes incident with exactly three points of S is less than (For...
Citació
Ball, S. On sets defining few ordinary planes. "Discrete and computational geometry", 19 Setembre 2017, p. 1-34.
Paraules clau
Eight associated points theorem, Green–Tao, Ordinary planes, Sylvester–Gallai
Grup de recerca
GAPCOMB - Geometric, Algebraic and Probabilistic Combinatorics

Participants