Carregant...
Carregant...

Vés al contingut (premeu Retorn)

Wildness of the problems of classifying two-dimensional spaces of commuting linear operators and certain Lie algebras

Autor
Futorny, V.; Klymchuk, T.; Petravchukc, A.; Sergeichuk , V.
Tipus d'activitat
Article en revista
Revista
Linear algebra and its applications
Data de publicació
2018-01-01
Volum
536
Pàgina inicial
201
Pàgina final
209
DOI
https://doi.org/10.1016/j.laa.2017.09.019 Obrir en finestra nova
Repositori
http://hdl.handle.net/2117/108725 Obrir en finestra nova
URL
http://www.sciencedirect.com/science/article/pii/S0024379517305438 Obrir en finestra nova
Resum
For each two-dimensional vector space V of commuting n×n matrices over a field F with at least 3 elements, we denote by V˜ the vector space of all (n+1)×(n+1) matrices of the form [A¿00] with A¿V. We prove the wildness of the problem of classifying Lie algebras V˜ with the bracket operation [u,v]:=uv-vu. We also prove the wildness of the problem of classifying two-dimensional vector spaces consisting of commuting linear operators on a vector space over a field.
Paraules clau
Matrix Lie Algebras, Spaces Of Commuting Linear Operators, Wild Problems

Participants

  • Futorny, Vyacheslav  (autor)
  • Klymchuk, Tetiana  (autor)
  • Petravchukc, Anatolii P.  (autor)
  • Sergeichuk, Vladimir V.  (autor)

Arxius