Carregant...
Carregant...

Vés al contingut (premeu Retorn)

On the difference between permutation polynomials

Autor
Nurdagül, A.; Odzak, A.; Patel, V.; Quoos, L.; Somoza, A.; Topuzoglu, A.
Tipus d'activitat
Article en revista
Revista
Finite fields and their applications
Data de publicació
2018-01-01
Volum
49
Pàgina inicial
1
Pàgina final
11
DOI
https://doi.org/10.1016/j.ffa.2017.09.009 Obrir en finestra nova
URL
http://www.sciencedirect.com/science/article/pii/S107157971730120X?via%3Dihub Obrir en finestra nova
Resum
The well-known Chowla and Zassenhaus conjecture, proved by Cohen in 1990, states that if p>(d2-3d+4)2, then there is no complete mapping polynomial f in Fp[x] of degree d=2. For arbitrary finite fields Fq, a similar non-existence result was obtained recently by Isik, Topuzoglu and Winterhof in terms of the Carlitz rank of f. Cohen, Mullen and Shiue generalized the Chowla–Zassenhaus–Cohen Theorem significantly in 1995, by considering differences of permutation polynomials. More precisely, the...
Paraules clau
Carlitz rank, Chowla–Zassenhaus conjecture, Curves over finite fields, Permutation polynomials

Participants

  • Nurdagül, Anbar  (autor)
  • Odzak, Almasa  (autor)
  • Patel, Vandita  (autor)
  • Quoos, Luciane  (autor)
  • Somoza Henares, Anna  (autor)
  • Topuzoglu, Alev  (autor)