Carregant...
Carregant...

Vés al contingut (premeu Retorn)

D-modules, Bernstein-Sato polynomials and F-invariants of direct summands

Autor
Alvarez, J.; Huneke, C.; Núñez-Betancourt, L.
Tipus d'activitat
Article en revista
Revista
Advances in mathematics
Data de publicació
2017-12-01
Volum
321
Pàgina inicial
298
Pàgina final
325
DOI
https://doi.org/10.1016/j.aim.2017.09.019 Obrir en finestra nova
Repositori
http://hdl.handle.net/2117/111072 Obrir en finestra nova
URL
http://www.sciencedirect.com/science/article/pii/S0001870817302657?via%3Dihub Obrir en finestra nova
Resum
We study the structure of D -modules over a ring R which is a direct sum- mand of a polynomial or a power series ring S with coefficients over a field. We relate properties of D -modules over R to D -modules over S . We show that the localization R f and the local cohomology module H i I ( R ) have finite length as D -modules over R . Furthermore, we show the existence of the Bernstein-Sato polynomial for elements in R . In positive characteristic, we use this relation between D -modules over R ...
Citació
Alvarez, J., Huneke, C., Núñez-Betancourt, L. D-modules, Bernstein-Sato polynomials and F-invariants of direct summands. "Advances in mathematics", 1 Desembre 2017, vol. 321, p. 298-325.
Paraules clau
Bernstein–Sato polynomial, D-modules, Direct summands, F-jumping numbers, Local cohomology, Test ideals
Grup de recerca
GEOMVAP - Geometria de Varietats i Aplicacions

Participants