Carregant...
Carregant...

Vés al contingut (premeu Retorn)

Geodesic flows and Neumann systems on Stiefel varieties: geometry and integrability

Autor
Fedorov, Y.; Jovanovic, B.
Tipus d'activitat
Article en revista
Revista
Mathematische Zeitschrift
Data de publicació
2010-12-03
Volum
270
Número
3-4
Pàgina inicial
659
Pàgina final
698
DOI
https://doi.org/10.1007/s00209-010-0818-y Obrir en finestra nova
Repositori
http://hdl.handle.net/2117/11987 Obrir en finestra nova
URL
http://www.springerlink.com/content/c1j422973455433k/ Obrir en finestra nova
Resum
We study integrable geodesic flows on Stiefel varieties Vn,r = SO(n)/SO(n−r ) given by the Euclidean, normal (standard), Manakov-type, and Einstein metrics.We also consider natural generalizations of the Neumann systems on Vn,r with the above metrics and proves their integrability in the non-commutative sense by presenting compatible Poisson brackets on (T ∗Vn,r )/SO(r ). Various reductions of the latter systems are described, in particular, the generalized Neumann system on an oriented Gras...
Citació
Fedorov, Y. Geodesic flows and Neumann systems on Stiefel varieties: geometry and integrability. "Mathematische Zeitschrift", 03 Desembre 2010, p. 1-40.
Grup de recerca
SD - Sistemes Dinàmics de la UPC

Participants