Carregant...
Carregant...

Vés al contingut (premeu Retorn)

Differential operators and the Witten genus for projective spaces and Milnor manifolds

Autor
Galvez, M.; Tonks, A.
Tipus d'activitat
Article en revista
Revista
Mathematical proceedings of the Cambridge Philosophical Society
Data de publicació
2003
Volum
135
Número
1
Pàgina inicial
123
Pàgina final
131
DOI
https://doi.org/10.1017/S0305004102006618 Obrir en finestra nova
Repositori
http://hdl.handle.net/2117/12031 Obrir en finestra nova
URL
http://journals.cambridge.org/action/displayAbstract?aid=163180 Obrir en finestra nova
Resum
A $genus$ (in the sense of Hirzebruch [4]) is a multiplicative invariant of cobordism classes of manifolds. Classical examples include the numerical invariants given by the signature and the $\widehat{A}$- and Todd genera. More recently genera were introduced which take as values modular forms on the upper half-plane, $\frak{h}=\{\,\tau\;|\;\mathrm{Im}(\tau)>0\,\}$. The main examples are the elliptic genus $\phi_{ell}$ and the Witten genus $\phi_W$; we refer the reader to the texts [7] or [9] fo...
Citació
Gálvez, I.; Tonks, A. Differential operators and the Witten genus for projective spaces and Milnor manifolds. "Mathematical proceedings of the Cambridge Philosophical Society", 2003, vol. 135, núm. 1, p. 123-131.
Grup de recerca
GEOMVAP - Geometria de Varietats i Aplicacions

Participants

Arxius