Carregant...
Carregant...

Vés al contingut (premeu Retorn)

Amplitude equations close to a triple-(+1) bifurcation point of D4-symmetric periodic orbits in O(2)-equivariant systems

Autor
Sanchez, J.; Net, M.; Vega, J.
Tipus d'activitat
Article en revista
Revista
Discrete and continuous dynamical systems. Series B
Data de publicació
2006-11
Volum
6
Número
6
Pàgina inicial
1357
Pàgina final
1380
DOI
https://doi.org/10.3934/dcdsb.2006.6.1357 Obrir en finestra nova
URL
https://www.aimsciences.org/journals/displayArticlesnew.jsp?paperID=1950 Obrir en finestra nova
Resum
A two-dimensional thermal convection problem in a circular annulus subject to a constant inward radial gravity and heated from the inside is considered. A branch of spatio-temporal symmetric periodic orbits that are known only numerically shows a multi-critical codimension-two point with a triple +1-Floquet multiplier. The weakly nonlinear analysis of the dynamics near such point is performed by deriving a system of amplitude equations using a perturbation technique, which is an extension of the...
Paraules clau
Amplitude equations, symmetric periodic orbits, thermal convection
Grup de recerca
DF - Dinàmica de Fluids: formació d'estructures i aplicacions geofísiques

Participants