Loading...
Loading...

Go to the content (press return)

Connecting Red Cells in a Bicolour Voronoi Diagram

Author
Abellanas Oar, Manuel; Bajuelos, A.; Canales, S.; Claverol, M.; Hernández, G.; Pereira de, I.
Type of activity
Journal article
Journal
Lecture notes in computer science
Date of publication
2012-11
Number
LNCS 7579
First page
210
Last page
219
DOI
https://doi.org/10.1007/978-3-642-34191-5 Open in new window
Repository
http://hdl.handle.net/2117/18614 Open in new window
URL
http://link.springer.com/content/pdf/10.1007%2F978-3-642-34191-5_20 Open in new window
Abstract
Let S be a set of n + m sites, of which n are red and have weight wR, and m are blue and weigh wB. The objective of this paper is to calculate the minimum value of the red sites’ weight such that the union of the red Voronoi cells in the weighted Voronoi diagram of S is a connected region. This problem is solved for the multiplicativelyweighted Voronoi diagram in O((n+m)2 log(nm)) time and for both the additively-weighted and power Voronoi diagram in O(nmlog(nm)) time
Citation
Abellanas, M. [et al.]. Connecting Red Cells in a Bicolour Voronoi Diagram. "Lecture notes in computer science", Novembre 2012, núm. LNCS 7579, p. 210-219.
Group of research
CGA -Computational Geometry and Applications
DCG - Discrete and Combinatorial Geometry

Participants

  • Abellanas Oar, Manuel  (author)
  • Bajuelos, Antonio L.  (author)
  • Canales, Santiago  (author)
  • Claverol Aguas, Mercè  (author)
  • Hernández, Gregorio  (author)
  • Pereira de Matos, Ines  (author)