Symplectic spreads and permutation polynomials
- Autor
-
Ball, S.; Zieve, M.
- Tipus d'activitat
-
Presentació treball a congrés
- Nom de l'edició
-
7th International Conference on Finite Fields and Applications
- Any de l'edició
-
2004
- Data de presentació
-
2004-07-01
- Llibre d'actes
-
Finite Fields and Applications
- Pàgina inicial
-
79
- Pàgina final
-
88
- Editor
-
Springer
- Repositori
-
http://hdl.handle.net/2117/18893
- URL
-
http://www.springer.com/computer/theoretical+computer+science/book/978-3-540-21324-6?cm_mmc=Google-_-Book%20Search-_-Springer-_-0
- Resum
-
Every symplectic spread of PG(3, q), or equivalently every ovoid of Q(4, q), is shown to give a certain family of permutation polynomials of GF(q) and vice-versa. This leads to an algebraic proof of the existence of the Tits-L¨uneburg spread of W(22h+1) and the Ree-Tits spread of W(32h+1), as well as to a new family of low-degree permutation polynomials over GF(32h+1).
- Citació
-
Ball, S.; Zieve, M. Symplectic spreads and permutation polynomials. A: International Conference on Finite Fields and Applications. "Finite Fields and Applications". Toulouse: Springer, 2004, p. 79-88.
- Grup de recerca
-
GAPCOMB - Geometric, Algebraic and Probabilistic Combinatorics