Carregant...
Carregant...

Vés al contingut (premeu Retorn)

Stochastic theory of synchronization transitions in extended systems

Autor
Muñoz, M.A.; Pastor-Satorras, R.
Tipus d'activitat
Article en revista
Revista
Physical review letters
Data de publicació
2003-05-19
Volum
90
Número
20
Pàgina inicial
204101-1
Pàgina final
204101-4
DOI
https://doi.org/10.1103/PhysRevLett.90.204101 Obrir en finestra nova
Repositori
http://hdl.handle.net/2117/126031 Obrir en finestra nova
https://arxiv.org/abs/cond-mat/0301059 Obrir en finestra nova
URL
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.90.204101 Obrir en finestra nova
Resum
We propose a general Langevin equation describing the universal properties of synchronization transitions in extended systems. By means of theoretical arguments and numerical simulations we show that the proposed equation exhibits, depending on parameter values: (i) a continuous transition in the bounded Kardar-Parisi-Zhang universality class, with a zero largest Lyapunov exponent at the critical point; (ii) a continuous transition in the directed percolation class, with a negative Lyapunov expo...
Citació
Muñoz, M.A., Pastor-Satorras, R. Stochastic theory of synchronization transitions in extended systems. "Physical review letters", 19 Maig 2003, vol. 90, núm. 20, p. 204101-1-204101-4.
Paraules clau
Langevin equation, Stochastic theory, Synchronization transitions in extended systems
Grup de recerca
SC-SIMBIO - Sistemes complexos. Simulació discreta de materials i de sistemes biològics

Participants

Arxius