Loading...
Loading...

Go to the content (press return)

The automorphism group of a free-by-cyclic group in rank 2

Author
Bogopolski, O.; Martino, A.; Ventura, E.
Type of activity
Journal article
Journal
Communications in algebra
Date of publication
2007-05
Volume
35
Number
5
First page
1675
Last page
1690
Repository
http://hdl.handle.net/2117/79983 Open in new window
URL
http://www.informaworld.com/smpp/content~content=a778212731~db=all~order=page Open in new window
Rewarded activity
Yes
Abstract
Let ¡ be an automorphism of a free group F 2 of rank 2 and let M ¡ = F 2 o ¡ Z be the corresponding mapping torus of ¡ . We prove that the group Out ( M ¡ ) is usually virtually cyclic. More- over, we classify the cases when this group is Ønite depending on the conjugacy class of the image of ¡ in GL 2 ( Z )
Citation
Bogopolski, O., Martino, A., Ventura, E. The automorphism group of a free-by-cyclic group in rank 2. "Communications in algebra", Maig 2007, vol. 35, núm. 5, p. 1675-1690.
Group of research
COMBGRAPH - Combinatorics, Graph Theory and Applications
GAPCOMB - Geometric, Algebraic and Probabilistic Combinatorics

Participants

Attachments