Loading...
Loading...

Go to the content (press return)

Second-order convex maximum entropy approximants with applications to high-order PDE

Author
Rosolen, A.; Millán, D.; Arroyo, M.
Type of activity
Journal article
Journal
International journal for numerical methods in engineering
Date of publication
2013-04-13
Volume
94
Number
2
First page
150
Last page
182
DOI
https://doi.org/10.1002/nme.4443 Open in new window
Project funding
MODELOS DE CAMPO DE FASE PARA PROBLEMAS DE DISCONTINUIDAD LIBRE: METODOS COMPUTACIONALES Y APLICACIONES EN FRACTURA, MATERIALES FERROELECTRICOS Y MEMBRANAS BIOLOGICAS-1
Abstract
We present a new approach for second-order maximum entropy (max-ent) meshfree approximants that produces positive and smooth basis functions of uniform aspect ratio even for nonuniform node sets and prescribes robustly feasible constraints for the entropy maximization program defining the approximants. We examine the performance of the proposed approximation scheme in the numerical solution by a direct Galerkin method of a number of PDEs, including structural vibrations, elliptic second-order PD...
Keywords
higher order PDE, maximum entropy approximants, meshfree methods, phase field, structural vibrations, thin shells
Group of research
LACÀN - Numerical Methods for Applied Sciences and Engineering

Participants