Recent research in wireless power transfer (WPT) using resonant inductive coupling has demonstrated very high efficiencies (above 40%) at large distances compared to the transmitting element dimensions, thereby exponentially increasing the number of potential applications of WPT. Since resonant inductive coupling is a very multidisciplinary field, different approaches have been proposed to predict the behaviour of these systems from the physical theory of resonators (coupled-mode theory), reflec...
Recent research in wireless power transfer (WPT) using resonant inductive coupling has demonstrated very high efficiencies (above 40%) at large distances compared to the transmitting element dimensions, thereby exponentially increasing the number of potential applications of WPT. Since resonant inductive coupling is a very multidisciplinary field, different approaches have been proposed to predict the behaviour of these systems from the physical theory of resonators (coupled-mode theory), reflected load theory and circuit theory. Also, there is in this field a heterogeneous definition of metrics without a clear optimization process. In this article we unify the different metrics and demonstrate how to maximize the power transfer efficiency in a non-radiative resonant wireless power transfer link from a circuit-centric point of view providing design guidelines in terms of optimal load impedance, optimal source impedance and optimal distance between coils.
Citació
Bou, E.; Sedwick, R.; Alarcon, E. Maximizing efficiency through impedance matching from a circuit-centric model of non-radiactive resonant wireless power transfer. A: IEEE International Symposium on Circuits and Systems. "IEEE International Symposium on Circuits and Systems (ISCAS), 2013: 19- 23 May 2013, Beijing, China". Beijing-Pekín: Institute of Electrical and Electronics Engineers (IEEE), 2013, p. 29-32.