Loading...
Loading...

Go to the content (press return)

Secret sharing, rank inequalities and information inequalities

Author
Martin, S.; Padro, C.; Yang, A.
Type of activity
Presentation of work at congresses
Name of edition
33rd. International Cryptology Conference
Date of publication
2013
Book of congress proceedings
Advances in Cryptology : CRYPTO 2013. 33rd Annual Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2013. Proceedings, Part II
First page
277
Last page
288
DOI
https://doi.org/10.1007/978-3-642-40084-1_16 Open in new window
URL
http://download.springer.com/static/pdf/255/chp%253A10.1007%252F978-3-642-40084-1_16.pdf?auth66=1395830907_96bf8abc8244469f520aed1551dc0f28&ext=.pdf Open in new window
Abstract
Beimel and Orlov proved that all information inequalities on four or five variables, together with all information inequalities on more than five variables that are known to date, provide lower bounds on the size of the shares in secret sharing schemes that are at most linear on the number of participants. We present here another negative result about the power of information inequalities in the search for lower bounds in secret sharing. Namely, we prove that all information inequalities on a bo...
Keywords
Information inequalities, Polymatroids, Rank inequalities, Secret sharing
Group of research
MAK - Mathematics Applied to Cryptography

Participants