Carregant...
Carregant...

Vés al contingut (premeu Retorn)

Integrability and non-integrability of periodic non-autonomous Lyness recurrences

Autor
Cima, A.; Gasull, A.; Mañosa, V.
Tipus d'activitat
Article en revista
Revista
Dynamical systems: an international journal
Data de publicació
2013-12-01
Volum
28
Número
4
Pàgina inicial
518
Pàgina final
538
DOI
https://doi.org/10.1080/14689367.2013.821103 Obrir en finestra nova
Projecte finançador
Análisis e identificación de sistemas con histéresis usando órbitas periódicas
CONTROL, DINÀMICA I APLICACIONS (CODALAB)
Repositori
http://hdl.handle.net/2117/20537 Obrir en finestra nova
URL
http://www.tandfonline.com/doi/abs/10.1080/14689367.2013.821103#.UnjoLBB_tww Obrir en finestra nova
Resum
This paper studies non-autonomous Lyness-type recurrences of the form x n+2 = (a n + x n+1)/x n , where {a n } is a k-periodic sequence of positive numbers with primitive period k. We show that for the cases k {1, 2, 3, 6}, the behaviour of the sequence {x n } is simple (integrable), while for the remaining cases satisfying this behaviour can be much more complicated (chaotic). We also show that the cases where k is a multiple of 5 present some different features. This paper studies non-autonom...
Citació
Cima, A.; Gasull, A.; Mañosa, V. Integrability and non-integrability of periodic non-autonomous Lyness recurrences. "Dynamical systems: an international journal", 01 Desembre 2013, vol. 28, núm. 4, p. 518-538.
Paraules clau
Integrability and non-integrability of discrete systems, QRT maps, numerical chaos, periodic difference equations, rational and meromorphic first integrals
Grup de recerca
CoDAlab - Control, Modelització, Identificació i Aplicacions

Participants