Loading...
Loading...

Go to the content (press return)

Centers of quasi-homogeneous polynomial differential equations of degree three

Author
Aziz, W.; Llibre, J.; Pantazi, C.
Type of activity
Journal article
Journal
Advances in mathematics
Date of publication
2014-03-20
Volume
254
First page
233
Last page
250
DOI
https://doi.org/10.1016/j.aim.2013.12.006 Open in new window
Repository
http://hdl.handle.net/2117/22462 Open in new window
Abstract
We characterize the centers of the quasi-homogeneous planar polynomial differential systems of degree three. Such systems do not admit isochronous centers. At most one limit cycle can bifurcate from the periodic orbits of a center of a cubic homogeneous polynomial system using the averaging theory of first order
Citation
Aziz, W.; Llibre, J.; Pantazi, C. Centers of quasi-homogeneous polynomial differential equations of degree three. "Advances in mathematics", 20 Març 2014, vol. 254, p. 233-250.
Keywords
Centers, Limit cycles, Quasi-homogeneous polynomial systems, cubic vector-fields, flows, plane
Group of research
SD - UPC Dynamical Systems

Participants

  • Aziz, Waleed  (author)
  • Llibre Saló, Jaume  (author)
  • Pantazi, Chara  (author)