Loading...
Loading...

Go to the content (press return)

Green matrices associated with generalized linear polyominoes

Author
Carmona, A.; Encinas, A.; Mitjana, M.
Type of activity
Journal article
Journal
Linear algebra and its applications
Date of publication
2015
Volume
468
First page
38
Last page
47
DOI
https://doi.org/10.1016/j.laa.2013.12.039 Open in new window
Project funding
Optimización y problemas extremales en teoria de grafos y combinatoria. Aplicacions a les redes de comunicación
Problemas de contorno discretos y técnicas de aproximación en estados de equilibrio
Repository
http://hdl.handle.net/2117/84592 Open in new window
URL
http://www.sciencedirect.com/science/article/pii/S0024379514000238 Open in new window
Abstract
A polyomino is an edge-connected union of cells in the planar square lattice. Here we consider generalized linear polyominoes; that is, the polyominoes supported by an n × 2 lattice. In this paper, we obtain the Green function and the Kirchhoff index of a generalized linear polyomino as a perturbation of a 2n-path by adding weighted edges between opposite vertices. This approach deeply links generalized linear polyomino Green functions with the inverse M-matrix problem, and especially...
Citation
Carmona, A., Encinas, A., Mitjana, M. Green matrices associated with generalized linear polyominoes. "Linear algebra and its applications", 2015, vol. 468, p. 38-47.
Keywords
Effective resistance, Green function, Green matrices, Kirchhoff index, Polyominoes
Group of research
MAPTHE - Matrix Analysis and Discrete Potential Theory

Attachments