Loading...
Loading...

Go to the content (press return)

Atmospheric boundary-layer height estimation using a Kalman filter and a frequency-modulated continuous-wave radar

Author
Lange, D.; Rocadenbosch, F.; Tiana-Alsina, J.; Frasier, S.
Type of activity
Journal article
Journal
IEEE transactions on geoscience and remote sensing
Date of publication
2015-06-01
Volume
53
Number
6
First page
3338
Last page
3349
DOI
https://doi.org/10.1109/TGRS.2014.2374233 Open in new window
Project funding
Aerosols, Clouds and Trace Gases Research Infrastructure Network
Initial Training on Atmospheric Remote Sensing
Observación lidar atmosférica multi-espectral, procesado de la señal y recuperación de productos de datos: red europea y cal/val de satélites
Repository
http://hdl.handle.net/2117/27128 Open in new window
URL
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6998066&tag=1 Open in new window
Abstract
An adaptive solution based on an Extended Kalman Filter (EKF) is proposed to estimate the Atmospheric Boundary-Layer Height (ABLH) from Frequency-Modulated Continuous-Wave (FMCW) S-band weather-radar returns. The EKF estimator departs from previous works, in which the transition interface between the Mixing-Layer (ML) and the Free-Troposphere (FT) is modeled by means of an erf-like parametric function. In contrast to lidar remote sensing where aerosols give strong backscatter returns over the wh...
Citation
Lange, D. [et al.]. Atmospheric boundary-layer height estimation using a Kalman filter and a frequency-modulated continuous-wave radar. "IEEE transactions on geoscience and remote sensing", 01 Juny 2015, vol. 53, núm. 6, p. 3338-3349.
Keywords
Adaptive kalman filtering, laser radar, remote sensing, signal processing.
Group of research
DONLL - Nonlinear dynamics, nonlinear optics and lasers
RSLAB - Remote Sensing Lab

Participants

Attachments