Loading...
Loading...

Go to the content (press return)

Strain hardening and dislocation avalanches in micrometer-sized dimensions

Author
Alcala, J.; Ocenásek, J.; Nowag, K.; Esque, D.; Ghisleni, R.; Michler, J.
Type of activity
Journal article
Journal
Acta materialia
Date of publication
2015-06-01
Volume
91
First page
255
Last page
266
DOI
https://doi.org/10.1016/j.actamat.2015.02.027 Open in new window
Project funding
Modelización multiescala de los ensayos de nanoindentación: desde la dinámica molecular hasta la mecánica del continuo
Repository
http://hdl.handle.net/2117/76989 Open in new window
Abstract
Present experiments and computational simulations furnish a fundamental background to the understanding of plastic flow across sample sizes. It is shown that self-organized criticality (SOC) governs the size distribution of dislocation avalanches in micrometer-sized sample dimensions. Onset of SOC denotes inception of a dislocation network so that dislocation avalanches occur at constant criticality level irrespectively of the applied stress. In these microcrystals, we find that the ratio betwee...
Citation
Alcala, J., Ocenásek, J., Nowag, K., Esque, D., Ghisleni, R., Michler, J. Strain hardening and dislocation avalanches in micrometer-sized dimensions. "Acta materialia", 01 Juny 2015, p. 255-266.
Keywords
Crystal plasticity, Dislocations, Mechanical properties, Strain hardening, compression, crystal plasticity, deformation, escape, flow, mean free paths, mechanisms, scale, single-crystals, strength
Group of research
InSup - Surface Interaction in Bioengineering and Materials Science Research Group

Participants

  • Alcala Cabrelles, Jorge  (author)
  • Ocenásek, Jan  (author)
  • Nowag, Kai  (author)
  • Esque de los Ojos, Daniel  (author)
  • Ghisleni, Rudy  (author)
  • Michler, Johann  (author)

Attachments