Loading...
Loading...

Go to the content (press return)

Noncomplete intersection prime ideals in dimension 3

Author
Goto, S.; O'Carroll, L.; Planas-Vilanova, F. A.
Type of activity
Journal article
Journal
Kyoto Journal of Mathematics
Date of publication
2015-06-01
Volume
55
Number
2
First page
461
Last page
475
DOI
https://doi.org/10.1215/21562261-2871794 Open in new window
Repository
http://hdl.handle.net/2117/78400 Open in new window
URL
http://projecteuclid.org/euclid.kjm/1433982760 Open in new window
Abstract
We describe prime ideals of height 2 minimally generated by three elements in a Gorenstein, Nagata local ring of Krull dimension 3 and multiplicity at most 3. This subject is related to a conjecture of Y. Shimoda and to a long-standing problem of J. Sally.
Citation
Goto, S., O'Carroll, L., Planas-Vilanova, F. A. Noncomplete intersection prime ideals in dimension 3. "Kyoto Journal of Mathematics", 01 Juny 2015, vol. 55, núm. 2, p. 461-475.
Keywords
Gorenstein rings
Group of research
GEOMVAP - Geometry of Manifolds and Applications

Participants

Attachments