Loading...
Loading...

Go to the content (press return)

Clustering media items stemming from multiple social networks

Author
Steiner, T.; Verborgh, R.; Gabarro, J.; Mannens, E.; Van de Walle, R.
Type of activity
Journal article
Journal
Computer journal
Date of publication
2015-09-27
Volume
58
Number
9
First page
1861
Last page
1875
DOI
https://doi.org/10.1093/comjnl/bxt147 Open in new window
Repository
http://hdl.handle.net/2117/84996 Open in new window
Abstract
We have created and evaluated an algorithm capable of deduplicating and clustering exact- and near-duplicate media items of type photo and video that get shared on multiple social networks in the context of events. This algorithm works in an entirely ad hoc manner without requiring any pre-calculation. When people attend events, they more and more share event-related media items publicly on social networks to let their social network contacts relive and witness the attended events. In the past, ...
Citation
Steiner, T., Verborgh, R., Gabarro, J., Mannens, E., Van de Walle, R. Clustering media items stemming from multiple social networks. "The Computer journal (paper)", 27 Setembre 2015, vol. 58, núm. 9, p. 1861-1875.
Keywords
clustering, deduplication, event summarization, face detection, features, media galleries, media items, social networks, video copy detection
Group of research
ALBCOM - Algorithms, Computational Biology, Complexity and Formal Methods

Participants

  • Steiner, Thomas  (author)
  • Verborgh, Ruben  (author)
  • Gabarro Valles, Joaquin  (author)
  • Mannens, Erik  (author)
  • Van de Walle, Rik  (author)