Loading...
Loading...

Go to the content (press return)

The Hopf Galois property in subfield lattices

Author
Crespo, T.; Rio, A.; Vela, M.
Type of activity
Journal article
Journal
Communications in algebra
Date of publication
2016-01-01
Volume
44
Number
1
First page
336
Last page
353
DOI
https://doi.org/10.1080/00927872.2014.982809 Open in new window
Project funding
Arithmetic of L functions and Galois structures
Avances en el programa de Langlands: aritmética de formas automorfas y modularidad
Repository
http://hdl.handle.net/2117/80143 Open in new window
Abstract
Let K/k be a finite separable extension, n its degree and (K) over tilde /k its Galois closure. For n <= 5, Greither and Pareigis show that all Hopf Galois extensions are either Galois or almost classically Galois and they determine the Hopf Galois character of K/ k according to the Galois group (or the degree) of (K) over tilde /k. In this paper we study the case n = 6, and intermediate extensions F/ k such that K subset of F subset of (K) over tilde, for degrees n = 4, 5, 6. We present an exam...
Citation
Crespo, T., Rio, A., Vela, M. The Hopf Galois property in subfield lattices. "Communications in algebra", 01 Gener 2016, vol. 44, núm. 1, p. 336-353.
Keywords
Holomorph, Hopf Galois extension, Hopf algebra, SEPARABLE FIELD-EXTENSIONS
Group of research
TN - Number Theory Research Group

Participants

Attachments