Loading...
Loading...

Go to the content (press return)

Asymptotic behavior of palais-smale sequences associated with fractional yamabe-type equations

Author
Fang, Y.; Gonzalez, M.
Type of activity
Journal article
Journal
Pacific journal of mathematics
Date of publication
2015-12-01
Volume
278
Number
2
First page
369
Last page
405
DOI
https://doi.org/10.2140/pjm.2015.278.369 Open in new window
Project funding
Ecuaciones en derivadas parciales: problemas de reacción-difusión y problemas geométricos
Ecuacions en derivades parcials i aplicacions
Partial Differential Equations: reaction-diffusion, integro-differential, and geometric problems
Repository
http://hdl.handle.net/2117/85274 Open in new window
URL
http://msp.org/pjm/2015/278-2/p04.xhtml Open in new window
Abstract
In this paper, we analyze the asymptotic behavior of Palais-Smale sequences associated to fractional Yamabe-type equations on an asymptotically hyperbolic Riemannian manifold. We prove that Palais-Smale sequences can be decomposed into the solution of the limit equation plus a finite number of bubbles, which are the rescaling of the fundamental solution for the fractional Yamabe equation on Euclidean space. We also verify the non-interfering fact for multibubbles.
Citation
Fang, Y., Gonzalez, M. Asymptotic behavior of palais-smale sequences associated with fractional yamabe-type equations. "Pacific journal of mathematics", 01 Desembre 2015, vol. 278, núm. 2, p. 369-405.
Keywords
Conformal geometry, Palais-Smale sequences, compactness, fractional Yamabe problem, laplacian
Group of research
EDP - Partial Differential Equations and Applications

Participants

  • Fang, Yi  (author)
  • Gonzalez Nogueras, Maria Del Mar  (author)

Attachments