Go to the content (press return)

Dynamics associated to connections between invariant objects with applications to neuroscience and astrodynamics

Total activity: 6
Type of activity
Competitive project
Funding entity
Funding entity code
202.312,00 €
Start date
End date
astrodinámica, astrodynamics, celestial mechanics, conexiones, connections, diffusion, difusión, dynamical systems, integrabilidad, integrability, invariant manifolds, mecánica celeste, neurociencia, neuroscience, sistemas dinámicos, variedades invariantes
This project belongs to the area of Dynamical Systems and Applications, and it is the natural continuation of projects MTM2006-00478,
MTM2009-06973 and MTM2012-31714, focusing on the local study and, mainly, the global study of continuous and discrete dynamical
systems using analytical and numerical tools.
The Dynamical Systems Group at the UPC is broad and interdisciplinary, combining experienced researchers with young researchers.
This high research potential, coupled with a solid theoretical base, makes it possible to cover a wide set of classic and new problems in
Dynamical Systems.
The goal of the project consists on keep our leadership in the areas of Arnold Diffusion, splitting of separatrices and Astrodynamics, as
well as advance in the study of bifurcations, computation of invariant objects and integrability. But we also want to strengthen the
application of Dynamical Systems tools to problems in Astrodynamics, Celestial Mechanics, Chemistry and, as was most recently done
with great success, in infinite dimensional Dynamical Systems and Neuroscience.
In order to obtain numerical results not only in some theoretical problems, like exponentially small splitting of separatrices, but also in
applications to Astrodynamics, Celestial Mechanics or Neuroscience, a highly computational approach is necessary, and very often it is
only possible through parallel computation (the group owns and maintains a HPC cluster). The group already has a widely recognized
expertise and prestige in these fields, and we plan to continue working on them in the following years
Finally, it is important to stress that the group seeks a balance between working on issues where it is already expert and internationally
recognized, and do it in new and more challenging problems for the group, such as infinite dimensional Dynamical Systems and
Our goals for the next three years are the following:
A. Arnold Diffusion
A.1. A-priori unstable Systems.
A.2. A-priori stable Systems.
A.3. Applications.
B. Exponentially small phenomena
B.1. Splitting of separatrices to low dimensional invariant objects.
B.2. Splitting of separatrices in the Hopf-zero singularity.
B.3. Using Melnikov potential in the problem of splitting of separatrices.
B.4. Billiards next to the boundary.
C. Integrability
C.1. Planar polinomial vector fields.
C.2. Algebraic integrable systems.
D. Invariant objects and their bifurcations
D.1. Invariant manifold of parabolic objects.
D.2. Filippov Systems.
D.3.Planar reversible diffeomorphisms.
D.4. Planar vector fields.
D.5. Quasi- periodic dynamics.
D.6. Applications.
E. Infinite Dimensional Dynamical Systems.
E.1. Growth of Sobolev norms in Hamiltonian PDEs.
E.2.Singular problems in PDEs.
F. Astrodynamics
F.1. Generation of natural and artificial trajectories.
F.2. Artificial satellite formation.
F.3. Analysis of orbits in the three body problem.
G. Neuroscience and Biomedical applications
G.1. Dynamics of models for single neurons and neural populations.
G.2. Biomedical applications.
Adm. Estat
Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016
Call year
Funcding program
Programa Estatal de Fomento de la Investigación Científica y Técnica de Excelencia
Funding subprogram
Subprograma Estatal de Generación de Conocimiento
Funding call
Excelencia: Proyectos I+D
Grant institution
Gobierno De España. Ministerio De Economía Y Competitividad, Mineco


Scientific and technological production

1 to 6 of 6 results