A simple graph G=(V,E) is said to be antimagic if there exists a bijection f:E¿[1,|E|] such that the sum of the values of f on edges incident to a vertex takes different values on distinct vertices. The graph G is distance antimagic if there exists a bijection f:V¿[1,|V|], such that ¿x,y¿V, ¿xi¿N(x)f(xi)¿¿xj¿N(y)f(xj). Using the polynomial method of Alon we prove that there are antimagic injections of any graph G with n vertices and m edges in the interval [1,2n+m-4] and, for trees with...
A simple graph G=(V,E) is said to be antimagic if there exists a bijection f:E¿[1,|E|] such that the sum of the values of f on edges incident to a vertex takes different values on distinct vertices. The graph G is distance antimagic if there exists a bijection f:V¿[1,|V|], such that ¿x,y¿V, ¿xi¿N(x)f(xi)¿¿xj¿N(y)f(xj). Using the polynomial method of Alon we prove that there are antimagic injections of any graph G with n vertices and m edges in the interval [1,2n+m-4] and, for trees with k inner vertices, in the interval [1,m+k]. In particular, a tree all of whose inner vertices are adjacent to a leaf is antimagic. This gives a partial positive answer to a conjecture by Hartsfield and Ringel. We also show that there are distance antimagic injections of a graph G with order n and maximum degree ¿ in the interval [1,n+t(n-t)], where t=min{¿,¿n/2¿}, and, for trees with k leaves, in the interval [1,3n-4k]. In particular, all trees with n=2k vertices and no pairs of leaves sharing their neighbour are distance antimagic, a partial solution to a conjecture of Arumugam.
The final publication is available at Springer via https://doi.org/10.1007/s10998-016-0151-2]
Citation
Llado, A., Miller, M. Approximate results for rainbow labelings. "Periodica Mathematica Hungarica", Març 2017, vol. 74, núm. 1, p. 11-21.