Loading...
Loading...

Go to the content (press return)

Locating-dominating partitions in graphs

Author
Pelayo, I. M.; Hernando, M.; Mora, M.
Type of activity
Presentation of work at congresses
Name of edition
VII Latin American Workshop on Cliques in Graphs
Date of publication
2016
Presentation's date
2016-11-10
Book of congress proceedings
Abstracts Latin American Workshop on Cliques in Graphs 7LAWCG
First page
26 (42)
Last page
26 (42)
Repository
http://hdl.handle.net/2117/104422 Open in new window
URL
http://www.mate.unlp.edu.ar/~liliana/lawclique_2016/prolist.pdf Open in new window
Abstract
Let G = (V, E) be a connected graph of order n. Let ¿ = {S1, . . . , Sk} be a partition of V . Let r(u|¿) denote the vector of distances between a vertex v ¿ V and the elements of ¿, that is, r(v, ¿) = (d(v, S1), . . . , d(v, Sk)). The partition ¿ is called a locating partition of G if, for every pair of distinct vertices u, v ¿ V , r(u, ¿) 6= r(v, ¿). A locating partition ¿ is called metriclocating-dominating partition (an MLD-partition for short) of G if it is also dominating,
Citation
Pelayo, I. M., Hernando, M., Mora, M. Locating-dominating partitions in graphs. A: Latin American Workshop on Cliques in Graphs. "Abstracts Latin American Workshop on Cliques in Graphs 7LAWCG". La Plata: 2016, p. 26 (42).
Keywords
coloring-locating partition, coloring-locating-dominating partition., dominating partition, locating partition
Group of research
COMBGRAPH - Combinatorics, Graph Theory and Applications
DCG - Discrete and Combinatorial Geometry

Participants

Attachments