A graph G is called edge-magic if there is a bijective function f from the set of vertices and edges to the set {1,2,…,|V(G)|+|E(G)|} such that the sum f(x)+f(xy)+f(y) for any xy in E(G) is constant. Such a function is called an edge-magic labelling of G and the constant is called the valence. An edge-magic labelling with the extra property that f(V(G))={1,2,…,|V(G)|} is called super edge-magic. A graph is called perfect (super) edge-magic if all theoretical (super) edge-magic valences are p...
A graph G is called edge-magic if there is a bijective function f from the set of vertices and edges to the set {1,2,…,|V(G)|+|E(G)|} such that the sum f(x)+f(xy)+f(y) for any xy in E(G) is constant. Such a function is called an edge-magic labelling of G and the constant is called the valence. An edge-magic labelling with the extra property that f(V(G))={1,2,…,|V(G)|} is called super edge-magic. A graph is called perfect (super) edge-magic if all theoretical (super) edge-magic valences are possible. In this paper we continue the study of the valences for (super) edge-magic labelings of crowns Cm¿K¯¯¯¯¯n and we prove that the crowns are perfect (super) edge-magic when m=pq where p and q are different odd primes. We also provide a lower bound for the number of different valences of Cm¿K¯¯¯¯¯n, in terms of the prime factors of m.
Citation
López, S.C., Muntaner-Batle, F.A., Prabu, M. Perfect (super) Edge-Magic Crowns. "Results in mathematics", 6 Gener 2017, p. 1-13.