The final publication is available at Springer via http://dx.doi.org/10.1007/s00145-015-9220-6
We put forward a new algebraic framework to generalize and analyze Di e-Hellman like Decisional Assumptions which allows us to argue about security and applications by considering only algebraic properties. Our D`;k-MDDH assumption states that it is hard to decide whether a vector in G` is linearly dependent of the columns of some matrix in G` k sampled according to distribution D`;k. It covers known a...

The final publication is available at Springer via http://dx.doi.org/10.1007/s00145-015-9220-6
We put forward a new algebraic framework to generalize and analyze Di e-Hellman like Decisional Assumptions which allows us to argue about security and applications by considering only algebraic properties. Our D`;k-MDDH assumption states that it is hard to decide whether a vector in G` is linearly dependent of the columns of some matrix in G` k sampled according to distribution D`;k. It covers known assumptions such as DDH, 2-Lin (linear assumption), and k-Lin (the k-linear assumption). Using our algebraic viewpoint, we can relate the generic hardness of our assumptions in m-linear groups to the irreducibility of certain polynomials which describe the output of D`;k. We use the hardness results to nd new distributions for which the D`;k-MDDH-Assumption holds generically in m-linear groups. In particular, our new assumptions 2-SCasc and 2-ILin are generically hard in bilinear groups and, compared to 2-Lin, have shorter description size, which is a relevant parameter for e ciency in many applications. These results support using our new assumptions as natural replacements for the 2-Lin Assumption which was already used in a large number of applications. To illustrate the conceptual advantages of our algebraic framework, we construct several fundamental primitives based on any MDDH-Assumption. In particular, we can give many instantiations of a primitive in a compact way, including public-key encryption, hash-proof systems, pseudo-random functions, and Groth-Sahai NIZK and NIWI proofs. As an independent contribution we give more e cient NIZK and NIWI proofs for membership in a subgroup of G`. The results imply very signi cant e ciency improvements for a large number of schemes.
We put forward a new algebraic framework to generalize and analyze Die-Hellman like Decisional Assumptions which allows us to argue about security and applications by considering only algebraic properties. Our D`;k-MDDH assumption states that it is hard to decide whether a vector in G` is linearly dependent of the columns of some matrix in G`k sampled according to distribution D`;k. It covers known assumptions such as DDH, 2-Lin (linear assumption), and k-Lin (the k-linear assumption). Using our algebraic viewpoint, we can relate the generic hardness of our assumptions in m-linear groups to the irreducibility of certain polynomials which describe the output of D`;k. We use the hardness results to nd new distributions for which the D`;k-MDDH-Assumption holds generically in m-linear groups. In particular, our new assumptions 2-SCasc and 2-ILin are generically hard in bilinear groups and, compared to 2-Lin, have shorter description size, which is a relevant parameter for eciency in many applications. These results support using our new assumptions as natural replacements for the 2-Lin Assumption which was already used in a large number of applications. To illustrate the conceptual advantages of our algebraic framework, we construct several fundamental primitives based on any MDDH-Assumption. In particular, we can give many instantiations of a primitive in a compact way, including public-key encryption, hash-proof systems, pseudo-random functions, and Groth-Sahai NIZK and NIWI proofs. As an independent contribution we give more ecient NIZK and NIWI proofs for membership in a subgroup of G`. The results imply very signicant eciency improvements for a large number of schemes.

Citation

Escala, A., Herold, G., Kiltz, E., Rafols, C., Villar, J. An algebraic framework for Diffie-Hellman assumptions. "Journal of cryptology", Gener 2017, vol. 30, núm. 1, p. 242-288.